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Abstract. In this paper, we study the self-coordination problem as
demonstrated by the well-known El Farol Bar problem (Arthur, 1994),
which later becomes what is known as the Minority Game in the econo-
physics community. While the El Farol problem or the minority game
has been studied for almost two decades, existing studies are most con-
cerned with efficiency only. The equality issue, however, has been largely
neglected. In this paper, we build an agent-based model to study both
efficiency and equality and ask whether a decentralized society can ever
possibly self-coordinate a result with highest efficiency while also main-
taining a highest degree of equality. Our agent-based model shows the
possibility of achieving this social optimum. The two key determinants
to make this happen are social preferences and social networks. Hence,
not only does institution (network) matters, but individual characteris-
tics (preferences) also matters. The latter part is open for human-subject
experiments for further examination.

1 Introduction

The El Farol Bar problem, introduced by Arthur (1994) has become over the
years the prototypical model of a system in which agents, competing for scarce
resources, adapt inductively their belief-models (or hypotheses) to the aggre-
gate environment they jointly create. The numerous works that have analyzed
and extended along different lines this problem show that perfect coordination,
that is, the steady state where the aggregate bar’s attendance is always equal
to the bar’s maximum capacity, is very hard, not to say impossible, to reach, at
least under the common knowledge assumption (Fogel, Chellapilla, and Ange-
line (1999); Edmonds (1999), to name just a few). Works where this assumption
has been relaxed, such as those that substituted best-response behavior with
reinforcement learning, show that perfect coordination is possible and that it
is, indeed, the long-run behavior to which the system asymptotically converges
(Whitehead, 2008). However, it is an equilibrium characterized by complete seg-
regation: the population split into a group of agents who always go (filling the
bar up to its capacity all the times) and a group of agents who always stay at
home.
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In this paper, we pose the question whether a state of perfect coordination
with perfect equality, that is, a state where the bar attendance is always equal
to its capacity and all the agents go to the bar with the same frequency, can be
reached and, if yes, under which conditions. We will refer to this special state as
the socially optimal equilibrium, as we implicitly assume that, among all states
in which the scarce resource is exploited to the full, the aggregate utility is max-
imized by its equalitarian division among all the agents. In fact, the equality, or
fairness, of the outcomes in the El Farol Bar problem is an issue that has been
largely neglected by the literature on the subject, with a paper of Farago, Green-
wald and Hall (2002) being, to the best of our knowledge, the only exception.
However, while in this latter work the authors consider the possibility to reach a
fair outcome through the imposition of a fee by a central planner, in the present
paper we consider whether the efficient and fair outcome can emerge from the
bottom up, through the process by which the agents’ strategies co-evolve and
adapt.

Our main finding is that is possible to reach the socially optimal equilib-
rium, with the following being two sufficient conditions (although further work
is required to assess their necessity). First, the agents need to make use, in their
decision-making process, of local information. This means that we have to mod-
ify the original model by introducing social networks. Second, the agents need to
have some kinds of social preferences: they need to care about their attendance
frequency compared with their neighbors’ attendance frequencies. In the present
work we adopt, as a first step, a relatively ’strong’ social preferences’ hypothesis,
according to which the agents have the tendency to attend the bar with the same
frequency of their neighbors. Moreover, we find that the number of periods it
takes for the system to reach the socially optimal equilibrium depends on the
kind of social network in which the agents are embedded: with some networks
strucutres, the process leading to the equilibrium is faster than with others.

The present paper is organized as follows. In Sect. 2, we will present a brief
review of the literature. In Sect. 3 we will describe the model and then, in Sect.
4, we will present the simulations’ results. Finally, in Sect. 5 we will present the
conclusions.

2 Previous Literature

In the El Farol Bar problem, N people decide independently, without collusion
or prior communication, whether to go to a bar. Going is enjoyable only if the
bar is not crowded, otherwise the agents would prefer to stay at home. The bar
is crowded if more than B people show up, whereas it is not crowded, and thus
enjoyable, if attendees are B or fewer. All the agents know the attendance figures
in the past m periods and each of them has a set of k predictors, in the form
of functions that map the past m periods’ attendance figures into next week’s
attendance. After each period, the predictors’ performance indexes are updated
according to the accuracy with which the predictors forecasted the bar’s atten-
dance. Then, the agent selects the most accurate predictor and uses the relative



forecast to decide whether going to the bar or staying at home in the next pe-
riod.

Inspired by the El Farol Bar problem, Challet and Zhang (1997) proposed
the Minority Game (MG). The main difference among the two models, apart
from the different ratio B/N (respectively 0.6 and 0.5), is that while in the
former no explicit assumption is made regarding N (in the Arthur’s model it
is set to 100), in the MG it is explicitly assumed that N is an odd number, an
assumption that, together with the 50% threshold, ensures that there is always a
majority of agents making the wrong choice. The characterizing feature of these
two models is that, in every period, a large share of agents in every period will
make a wrong forecast and, consequently, the set of strategies actually adopted
by the population will keep changing all the times. Although the competitive
process among predictors never comes to rest, the system’s dynamics is charac-
terized by a remarkable statistical regularity: at the macro level, the number of
attendees fluctuates around the threshold level B/N . On the other hand, and
most importantly in his paper’s context, these models show that, in systems
with heterogeneous sets of expectations and information sets that are common
knowledge, such as those described above, it is impossible (at least from a sta-
tistical point of view, in the case of El Farol Bar problem) to reach a perfectly
coordinated state with no fluctuations.

The El Farol Bar problem and the MG have inspired, since their introduc-
tion, many works in as many different directions. Here we will focus on two
research strands that are relevant for this paper: the introduction of different
leaning models in the El Farol Bar problem and the introduction of local inter-
action in the MG (quite strangely, examples of the adoption of local interaction
in the former model and of different learning mechanisms in the latter are much
rarer). Among the first research strand, we can distinguish two groups of works:
those which retain the best-reply behavior of the Arthur’s El Farol Bar prob-
lem and those adopting some kind of reinforcement learning mechanism. In the
first group, Edmonds (1999) proposes an extension of the El Farol Bar problem
where agents can change their strategies set by the means of a genetic pro-
gramming (GP) algorithm and are given the chance to communicate with other
agents before making their decision whether to go to the bar. Simulations show
that, although all agents were indistinguishable at the start in terms of their re-
sources and computational structure, they evolved not only different models but
also very distinct strategies and roles. Another work where the agents’ strategies
are allowed to co-evolve is that of Fogel, Chellapilla and Angeline (1999). In the
model they propose, the agents are endowed with 10 predictors that take the
form of autoregressive models with the number of lag terms and the relative
coefficients being the variables that evolve over time. For each predictor, one off-
spring is created (with mutation). The 10 models having the lowest prediction
error in the past 12 periods are selected to be the parent of the next generation.
Their simulations show that the system, in a typical trial, has a lower average
aggregate attendance (around 56.3%) and a higher standard deviation (17.6)
than the ones resulting from the Arthur’s model.



Other works, have abandoned the best-reply behavior to adopt the more ba-
sic reinforcement learning framework. One of the first works where the best-reply
behavior of the original Arthur’s model has been replaced by a kind of reinforce-
ment learning is that of Bell and Sethares (1999). In this paper, the authors
present and agent-based model where the agents’ strategies are represented by
an integer c determining the agents’ attendance frequency: if c = 2 the agent
goes to the bar once every 2 periods; if c = 3 he goes once every 3 periods and
so on. Every time an agent goes to the bar and has a good time (because the bar
was not too crowded) he decreases c (goes more often) whereas, in the opposite
case, he increases c (goes less often). No change in the attendance frequency
takes place if the agents stay at home, as it is assumes that he cannot assess
whether he made the right choice or not. Subsequently, Franke (2003) proposed
a reinforcement learning model that, although quite elaborated, for the purpose
of this paper can be summarized as follows: each agent goes to the bar with a
probability p. If the bar is not crowded he increases p, while if the bar turns out
to be too crowded, he decreases p. If the agent stays at home, a parameter u de-
termines the extent to which the attendance probability is updated according to
the bar’s aggregate attendance. In both these last two papers, simulations show
that the populations tend to split in two groups: a group of frequent bar-goers
and a group of agents who go to the bar very seldom. This result has been ana-
lytically obtained by Whitehead (2008): by applying the Erev and Roth (1998)
model of reinforcement learning to the El Farol Bar framework, he shows that
the long-run behavior converges asymptotically to the set of pure strategy Nash
equilibria of the El Farol stage game.

Among the second research strand, based on the introduction of local inter-
action in the MG, Paczuski, Bassler and Corral (2000) consider a random net-
work of interconnected Boolean elements under mutual influence, the so-called
Kauffman network. The performance of each agent is measured by counting the
number of times each agent is in the majority. After a certain number of periods,
the worst performer, who was in the majority most often, changes his strategy.
The Boolean function of that agent is replaced with a new Boolean function
chosen at random, and the process is repeated indefinitely. They observe that
in some epochs the dynamics of the network takes place on a very long attrac-
tor, while, otherwise, the network is either completely frozen or the dynamics
is localized on some attractor with a smaller period. Slanina (2000) proposes
a model where the agents are placed on a linear chain with nearest-neighbor
connections: each agent can ’see’ the action and the accumulated wealth of her
left-hand neighbor. Each agent is endowed with S strategies. Every agent has a
probability p of being an imitator. If an agent is an imitator and her neighbor
has larger accumulated wealth than the agent itself, she relegates the decision
to the neighbor and takes the same action. In all the other cases (if the neighbor
has a lower accumulated wealth or the agent is not an imitator), she will look
only at her s strategies and choose the best estimate from them. The results
show that there is a local minimum in the dependence of σ2/N on p, indicating
that there is an optimal level of imitation, beyond which the system perform



worse. Moreover, this learning dynamics leads to the creation of coherent areas
of poor and rich agents. Finally, Kalinowski, Schulz and Briese (2000) propose a
model where the agents are arranged on a circle and everyone gets the previous
decisions of his neighbors as input. The decisions of the (m− 1)/2 left and right
handed neighbors and the own one are known. Each agent looks at the more
successful strategy among the s strategies he is endowed with. When all have
decided the minority side is determined, every agent on this side gets a point,
the strategies are valued and the next round begins. Simulations show that the
system’s efficiency is maximized for m = 3. Furthermore, the authors optimize
the system through an evolutionary mechanism. The ’genetic code’ of an agent
consists of two genes: m and s. After n periods each agent looks at his direct
neighbor to the right and to the left and, if the best neighbor has at least 1%
more points than the agent, he gets the properties of this neighbor. Simulations
show that, setting m = 5 and s = 4 as initial states, most agents end up with m
and s equal to 2 or 3.

3 The Model

In the model we present, we retain the best-reply strategies of the original El
Farol Bar problem, however we modify the standard settings by adopting the in-
formational structure introduced by the works on the MG with local interaction.
Like in the original El Farol Bar problem, we consider a population composed by
N = 100 agents and set the attendance threshold B/N = 0.6. Each agent can
’see’ the actions, the strategies and the strategies’ performances of four other
agents (his neighbors, indicated with N1, N2, N3 and N4). In this paper, we
investigate two network typologies shown in Fig. 1: the circular neighborhood,
where each agent is connected to the two agents to his left and the two agents
to his right; the von Neumann neighborhood, with the agents occupying a cell in
a bi-dimensional grid covering the surface of a torus.

Contrarily to the prototypical El Farol Bar problem and MG settings, each

(a)

(b)

Fig. 1. Circular (a) and von Neumann (b) neighborhoods

agent is assigned, at the beginning of the simulation, only one strategy (that is,
k = 1), randomly chosen from the whole strategies’ space. The strategy specifies



the action the agent has to take in the current period for every possible com-
bination of his four neighbors’ actions in the previous period. So, the strategies
are represented by 16-bit long strings, with a strategies’ space of 216 possible
strategies (note, at this point, that, with the von Neumann neighborhood, we
have the typical settings of cellular automata). We define the variable di(t) as
the action taken by agent i in period t: it takes the value 1 if the agents goes
to the bar and the value 0 otherwise. Moreover, we define the variable si(t) as
the outcome of agent i’s decision in period t: it takes value 1 if the agent took
the rightdecision (that is, if he went to the bar and the bar was not crowded or
if he stayed at home and the bar was too crowded) and it takes value 0 if the
agents took the wrong decision (that is, if he went to the bar and the bar was too
crowded or if he stayed at home and the bar was not crowded). The agents are
endowed with a memory of length m. This means that they store in two vectors,
d and s of length m, the last m values of d and s, respectively. So, at the end
of any given period t, agent i’s vectors di and si, are composed, respectively, by
di(t), di(t − 1), ..., di(t + 1 −m), and by si(t), si(t − 1), ..., si(t + 1 −m). Agent
i’s attendance frequency, ai, is defined by (1):

ai =
1

m

t+1−m∑
j=t

di(j) (1)

The attendance frequency’s value can go from 1, if the agent always went to the
bar, to 0, if the agent never went to the bar, in the last m periods. Moreover,
the agent i’s forecasting success, fi, is given by (2):

fi =
1

m

t+1−m∑
j=t

si(j) (2)

The forecasting success’s value can go from 1, if the agent always made the right
choice, to 0, if the agent always made the wrong choice, in the last m periods.
Finally, we define the strategy’s fitness of agent i, Fi, as follows:

Fi =
fi

|ai − 0.6|+ 1
(3)

We can see that the strategy fitness’s value can go from the minimum value of 0,
if the agent’s forecasting success is 0, to the maximum value of 1, if the agent’s
forecasting success is 1 and the agent’s attendance frequency is 0.6. Implicit in
this rule is the assumption that each agent wants to go to the bar with the same
frequency of the other agents. Given this assumption, an attendance frequency
of 0.6 is the only one compatible with the full exploitation of the bar’s capacity:
a higher attendance frequency would lead to an over-exploitation while a lower
attendance frequency would lead to the under-exploitation of the bar’s capacity.

In any given period, an agent either imitates the strategy of the most suc-
cessful agent among its neighbors or, with a certain probability p, he mutates
his strategy by changing one randomly chosen bit of his strategy. In order for
any strategy to take part to the selection and replication process, it has to be



adopted for at least m periods: so, we can think of m as the trial period of
a strategy. This means that an agent changes its strategy (either through im-
itation or mutation) only if it has been adopted for at least m periods, and,
in the imitation process, he considers only those neighbors whose strategy has
been adopted for at least m periods. So, to recapitulate, in order for an agent to
change its strategy through imitation, five conditions are necessary:

a) the agent’s strategy fitness is below 1.
b) the agent’s strategy in not in its trial period.
c) The agent has at least one neighbor:

– whose strategy has a higher fitness than the fitness of the agent’s own
strategy;

– whose strategy in not in its trial period;
– whose strategy is different from the agent’s own strategy.

If the first two conditions are met but at least one of the other three is not
(that is, if the agent has not yet reached the optimal strategy but in the current
period he cannot imitate any of his neighbors), the agent, with a probability p,
will mutate one rule of his strategy. While the imitation process ensures that
the most successful strategies spread in the population, the mutation process
ensures that new, eventually better, strategies are introduced over time. Once
the agent has adopted a new strategy (either through imitation or mutation) he
will reset his memory to zero and will start keeping track of the new strategy’s
fitness. Once one agent’s strategy reaches the fitness value of 1, the agent stops
the imitation and mutation processes, as it is perfectly satisfied by its strategy.
The socially optimal equilibrium is a state where all the agents’ strategies have
fitness equal to 1: at this point all the strategies evolutionary processes stop, as
the system has reached the global maximum.

4 Simulations’ Results

Fig. 2 shows the dynamics of the average fitness of the population in a typical run
for each of the two social networks considered: the von Neumann neighborhood
(vNN) and the circular neighborhood (CN). As we can see, the system reaches
the socially optimal equilibrium (where the average fitness equal to 1) in both
cases, but with the von Neumann neighborhood the process appear to be faster
than with the Circular neighborhood. From Fig. 2, looking at the dynamics of
the average fitness with the von Neumann neighborhood, we can see a spike
just before the system reaches the perfect coordination, with the average fitness
jumping above 0.8 before falling back to a level close to 0.5. Although not present
in every run, these spikes are quite common with the von Neumann neighbor-
hood. They occur when a relatively steady cycle emerges characterized by a ’sea’
of perfectly coordinated agents surrounding an ’island’ of low-fitness agents with
attendance frequencies below or above the optimal value of 0.6. These cycles are
relatively steady because the agents at the border of the ’island’ have the same
strategy of the perfectly coordinated agents, so cannot change their strategy by



imitation. However, sooner or later, their strategy will change by mutation and
some of these mutation will unsettle the cycle in which they had been trapped.

Fig. 3 shows the distribution of the periods the system takes to reach the

Fig. 2. The average fitness dynamics

socially optimal equilibrium with the two social networks (note that the scales
of the x-axes are different for the two cases). First of all, we observe that over
1000 simulations we run for each kind of network, the system always reached
the socially optimal equilibrium. Second, it takes on average around 5 times less
to reach the socially optimal equilibrium with the von Neumann neighborhood
than with the circular neighborhood (around 5800 in the former case periods
against 28500 periods in the latter).

An interesting feature of the model is that, at the equilibrium, always the

(a) (b)

Fig. 3. Circular (a) and von Neumann (b) neighborhoods

same four strategies emerge, with both network structures. Fig. 4 shows the four
strategies emerging with the circular network. Even if the whole strategies are



composed by 16 binary numbers, corresponding to the 16 possible combinations
of the agent’s four neighbors’ actions, at the equilibrium a cyclical pattern com-
posed by five combinations emerges, so only five of the strategy’s 16 rules are
used by the agents. Moreover, looking at Fig. 4 we can see how, at the equilib-
rium, the agents do not need to look at all their four neighbors’ actions anymore,
as each of the four emerging strategies is equivalent to the action of one of his
neighbors: Strategy 1 is equivalent to the N1’s action (shown in bold); Strategy
2 is equivalent to the N3’s action; Strategy 3 is equivalent to the N4’s action
(shown in bold; Strategy 4 is equivalent to the N2’s action. In other words, if,
for example Strategy 1 emerges, the socially optimal equilibrium is maintained
with the agents following the rule ”Do what your neighbor N1 did in the last
period”, and similarly for the other three strategies.

Fig. 4. Emergent strategies with the circular neighborhood

Fig. 5 shows the four strategies emerging with the von Neumann neighbor-
hood. In this case, we can see that, at the equilibrium, only three combinations
of actions appear periodically. Also in this case, at the equilibrium, the agents
do not need to look at all their neighbors’ actions to follow their strategy. While
in the case of the circular neighborhood, every strategy was associated with a
neighbor, in this case every strategy is associated with two neighbors. If we look
at the von Neumann neighborhood of Fig. 1, we can see that each of the four
strategies corresponds to the actions of two adjacent neighbors: the neighbor N1
or N3 for Strategy 1 (shown in bold); the neighbor N2 or N4 for Strategy 2; the
neighbor N1 or N4 for Strategy 3 (shown in bold); the neighbor N2 or N3 for
Strategy 4. So, like with the circular neighborhood case, also in this case all the
agents need to do in order to maintain the socially optimal equilibrium, once it
has been reached, it is to follow simple rules based on the previous action of just
one of their neighbors: if, for example, Strategy 1 emerges, the rule to follow is
”Do what your neighbors N1 or N3 did in the last period”, and similarly for the
other three strategies. We have to note that there is no guarantee, and indeed
it is very unlikely, that the system would have ever reached the socially optimal
equilibrium if the agents were to follow these simple rules from the beginning.

Finally, we observe that all the four strategies that emerge with the cir-
cular neighborhood, generate the same 5-period cycle represented by the cycle



Fig. 5. Emergent strategies with the circular neighborhood

[1-1-1-0-0], whereas with the von Neumann neighborhood, beside this 5-period
circle, two 10-period cycles emerge: the cycle [1-1-1-1-0-0-1-1-0-0] and the cycle
[1-1-0-0-1-1-0-1-1-0].

5 Conclusions

While the El Farol Bar problem has been studied for almost two decades, existing
studies are most concerned with efficiency only. The equality issue, however, has
been largely neglected. In this paper, we present an agent-based model to assess
whether a decentralized society can ever possibly self-coordinate a result with
highest efficiency while also maintaining a highest degree of equality, a steady
state that we called socially optimal equilibrium. Our agent-based model shows
the possibility of achieving this equilibrium with the following being two suffi-
cient conditions: a) the agents have to take their decisions on the basis of local
information (i.e. their neighbors’ past attendances): global information does not
allow to reach the socially optimal equilibrium because it causes herd behavior,
causing too many or too few people going to the bar at the same time; b) the
agents need to have a preference for an equal attendance: if the agents are indif-
ferent to whether they go less or more than their neighbors, the system is likely
to converge to an equilibrium where 60% of agents always go and 40% never go
to the bar.

Moreover, the simulations results showed that once the socially optimal equi-
librium has been reached, it can be maintained through the adoption of rule-
of-thumb strategy allowing the agents to minimize their decisional workload.
This fact warns us of the difficulty to infer the evolutionary processes that led
to the emergence of behavioral rules, just as would have been very difficult, if
not impossible, for an observer, looking at the simple behavioral rules emerging
after the socially optimal equilibrium has been reached, to infer the complex co-
evolutionary process that led to the equilibrium itself. The observation of those
simple rules, in fact, would even mislead him in his search for the process leading
to the equilibrium, as no equilibrium would have ever been reached if the agents
were to follow these rules from the beginning.

Finally, our simulations show that the network structure connecting the
agents is represented by the von Neumann neighborhood, the system reaches
the socially optimal equilibrium five times faster (on average) than if the agents
are connected through a circular network: it seems that different social networks



process the information with different levels of efficiency. So we can say that
both the individual preferences and institutional framework matter as regards
to the kind of social convention that finally emerges and the time it takes for it
to emerge.
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