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Abstract.  This paper describes a preliminary, lightweight and robust method 
for simulating vegetation growth that has basic validity in the face of remotely 
sensed vegetation data while being simple enough to retain conceptual and 
computational tractability when it is incorporated into a large agent-based 
model of human subsistence, conflict, and displacement in East Africa. The 
sub-model predicts daily vegetation values for 2.5 million 1km2 land grid cells 
using remotely sensed monthly rainfall data.  It has been informally validated 
against remotely sensed, bi-monthly normalized difference vegetation index 
(NDVI) data. We believe that the approach presented in this sub-model is 
uniquely well suited to representing dryland vegetation dynamics within a 
context of a large, human-environment interaction model such as the RiftLand 
model of which it is part. 
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1   Introduction 

This paper describes a lightweight and robust method for simulating vegetation 
growth that has basic validity in the face of remotely sensed vegetation data while 
being simple enough to retain conceptual and computational tractability when it is 
incorporated into a large agent-based model of human subsistence, conflict, and 
displacement in East Africa. The sub-model must be simple for two reasons: first, it 
must have a small enough memory footprint and fast enough execution to avoid 
slowing down the rest of the model; second, it must be easy enough to understand so 
that it can be presented as part of the larger modeling effort without requiring too 
much faith on the part of a critical reader. We seek to achieve these goals by basing 
the sub-model in fundamental ecological theory while calibrating and verifying the 
model against extensive remotely sensed data. The result is not a precise fit between 
model output and data, but rather a general agreement that is robust to various 
ecosystem types (of which there are many) and an array of weather conditions. While 
such a model would not serve if vegetation growth itself were the object of study, we 
believe it has real advantages for a model of the this sort where there are so many 
potential moving parts that simplifying abstractions must be made at all levels. 
Furthermore, the presence of extensive data against which to validate the sub-model 



allows us to develop an objective understanding of how well the sub-model is 
performing. 

This vegetation sub-model is a fundamental part of the RiftLand agent-based model 
that seeks to model human subsistence, conflict and displacement in East Africa at 
multiple scales (Cioffi-Revilla, 2011). The RiftLand model covers a 2.5 million 
square kilometer area that includes all or parts of Kenya, Ethiopia, Sudan, Uganda, 
Democratic Republic of Congo, Rwanda, Burundi and Tanzania. Vegetation growth 
and human subsistence are modeled within this area at a spatial resolution of 30 arc 
seconds (approximately 1km2) and a temporal resolution of 1 day. People are modeled 
at the household level. Ethnic and national identities are based on anthropological 
literature. Rural households divide their time between herding and farming as dictated 
by environmental conditions and, in both modes of subsistence, are heavily dependent 
on rainfall for survival.  

When drought comes to an area, people there are stressed and may come into 
conflict with one another and/or their subsistence activities may fail (see Barnett and 
Adger, 2007; Reuveny, 2007). In this case, they may be forced out of their 
accustomed lifestyle, becoming internally displaced people (IDPs). Displaced 
households may make further moves to cities and camps that have a limited capacity 
in terms of coping with increases in populations and often as a result, become 
overwhelmed. Eventually, this migration can place pressure on international borders 
creating refugee flows between states and international tensions. 

The RiftLand model thus involves small-scale human/environment interactions and 
aggregates these interactions up to larger scales. These larger scales include tension 
between different livelihood types (herding and farming), neighboring ethnicities, 
urban and rural populations, interacting cities, various interest groups within a polity, 
and neighboring states. This makes for a very complex modeling environment where 
keeping each part as simple as possible (but no simpler!) is essential. Too complex 
and the model is slow and hard to understand - too simple and the basic dynamics of 
population stress and movement are unrecognizable. The dynamics of land cover, 
specifically vegetation, underlie much of the activity within the model.  

Our focus within this paper is the sub-model representing vegetation growth that is 
both spatially and temporally explicit. This vegetation growth model is crucial for the 
agent-based model that operates on top of such land cover. However, as noted above, 
we want the vegetation model to be simple (easily explained) and efficient (in terms 
of computer resources used). The standard measure of vegetation in a regional context 
is that of Normalized Difference of Vegetation Index (NDVI). NDVI measures the 
differential reflection of green vegetation in the visible and infrared portion of the 
spectrum. This can be expressed as: 

NDVI = (IR –R)/(IR + R) (1) 

Where IR = Infrared reflectance and R = Red reflectance. 
 
NDVI is highly correlated to the fraction of absorbed photosynthetically active 

radiation and directly indicates the photosynthetic capacity of the land cover. It also 
correlates with many vegetation indices such as green leaf biomass, leaf area index, 
and annual net primary productivity. Many potential applications of the data have 
been explored. For instance, these data may be used as input for modeling global bio-



geochemical and hydrological processes and global and regional climate, for 
characterizing land surface biophysical properties and processes, including primary 
production and land cover conversion. 

In the African context, NDVI has been used to assess the green vegetation cover in 
various environments at a range of spatial and temporal scales. To mention few, 
NDVI has been used in classifying continental and regional land covers (Tuker et al., 
1985a), monitoring land use change (Lambin and Ehrlich, 1997), monitoring 
vegetation dynamics (Anyamba and Tucker, 2005), assessing herbaceous biomass and 
dry matter accumulation (Tucker, et al, 1985b), monitoring drought condition 
(Hutchinson, 1991). Importantly for our purposes here, NDVI has been shown to 
scale approximately linearly with net production of vegetation (Prince, 1991).  

Nicholson et al. (1990) argued that exploring the relationship between NDVI and 
soil moisture could provide greater understanding of the environmental constraints on 
vegetation growth. However, acquiring soil moisture data on a large scale is costly 
and in most developing countries, in many cases, it is still near to impossible. The 
most feasible way could be to use rainfall as a proxy. Hence many studies have been 
conducted to determine the relationship between NDVI and rainfall. These studies 
tried to measure the cross-correlation between time series of NDVI and rainfall. 
Although the studies differ in their details, the outcome from most of the studies 
indicated that there is a strong positive relationship between rainfall and NDVI.  

The current state of the art in estimating NDVI given time-series rainfall data is 
using the geographically weighted regression (GWR) method (see Fotheringham et 
al., 2002). This method has been applied with considerable success to African 
drylands by Gaughan et al. (2010). In the current context, however, this approach has 
two problems: First, it is computationally somewhat complex and would be difficult 
to implement efficiently within the model. Second, it is not fundamentally a dynamic 
technique. In this application, we are interested not only in having accurate estimates 
of vegetation given a rainfall time series, but also in how this growth pattern reacts to 
other shocks that are endogenous to the model - chief among them being grazing by 
pastoral herds. The method presented below seeks to retain some of the accuracy of 
the GWR method, while maintaining the fast processing capabilities and dynamic 
properties that are essential to this modeling application. 

2   Methodology 

We make use of two remotely-sensed datasets in this simple vegetation model, one 
for rainfall and one for vegetation. For rainfall, we use Tropical Rainfall Measuring 
Mission (TRMM1) 3B43. The TRMM 3B43 data are provided with a temporal 
resolution of one month and a spatial resolution of 0.25 by 0.25 degree 
(approximately 30km by 30km). The data are provided both at global and continental 
scale. 

                                                             
1The data used in this effort were acquired as part of the activities of National Aeronautics and 
Space Administration’s (NASA's) Science Mission Directorate, and are archived and 
distributed by the Goddard Earth Sciences (GES) Data and Information Services Center 
(DISC). 



Following the assumption of linear relationship between NDVI and vegetation, we 
estimate vegetation using the MODIS/TERRA NDVI data set, specifically 
MOD13A22. The MOD13A2 data are provided every 16 days at a spatial resolution of 
1km by 1km as tiles of approximately 1200km by 1200km. We recombine and clip 
these to the study area using ArcGIS. NDVI values are converted to kilograms of dry 
matter based on assessments of good pasture in Northern Kenya as estimated by de 
Leeuw and Tothill (1993). Both datasets have a temporal span from 2001 to 2008. 

We use ArcGIS to reformat these data before bringing them into the model. Since 
both rainfall and NDVI data are provided in hierarchical data format (HDF) format, 
which is not directly importable by ArcGIS, we first converted the HDF format into a 
Grid using ArcGIS, particularly using “Make NetCDF Raster Layer” tools from the 
Multidimension Tools toolbox of ArcGIS to create the raster layers. We use the 
mosaic to raster function in ArcGIS to aggregate all tiles of the NDVI data that are 
located within the study area. We then clip the mosaic data by masking the RiftLand 
boundary. Since rainfall data are provided at global scale, we extract the area of 
interest by masking the RiftLand boundary. We then project both the NDVI and 
rainfall data to the coordinate system. Both the NDVI and Rainfall data are then 
converted to ASCII files and used in the model. 

We base our vegetation sub-model on a logistic growth curve along the lines of one 
described by France and Thornley (1984). 

Vt+1 = Vt + GVt(1 - V/Vmax) (2) 

Were V is the mass of the vegetation on a parcel, G is a growth rate, and Vmax is the 
maximum possible vegetation on a single pixel. While this curve has a solid basis in 
biological theory, we find that we need to modify it slightly by adding a floor and a 
ceiling to the vegetation amounts. We enforce: 

0.1 < V < 0.9 (3) 

This prevents the model from becoming trapped at zero or Vmax. Our justification 
for imposing these constraints have both theoretical and empirical basis. In theoretical 
terms, the floor value can be thought of as representing roots, seeds, nubs, etc., - 
inedible and hard-to-kill parts of vegetation that allow it to recover when conditions 
permit. If an area is truly devoid of plant matter, plants will not grow there no matter 
how much it might rain, thus any area that recovers after rains must have some 
amount of plant matter even in the harshest of times. Similarly, the upper value can be 
thought of as reflecting the work of natural pests and grazers - even under the best 
conditions, a parcel never produces more than 90% of its potential. Empirically, we 
find that NDVI values for vegetated parcels in the region generally vary between 0.1 
and 0.9. Thus the required model dynamics, theoretical intuition, and observation all 
point to the imposition of floor and ceiling constraints with values similar to these. 

The real action in the model comes from the growth rate (G). We model G as a 
function of rainfall, existing vegetation, and land quality.  

                                                             
2These data are distributed by the Land Processes Distributed Active Archive Center (LP 
DAAC), located at the U.S. Geological Survey (USGS) Earth Resources Observation and 
Science (EROS) Center. 



G = Gbase * (aRt - bVt + cQ)  (4) 

 
Gbase is the base growth rate. At present, Gbase is uniform for all parcels in the 

model, though further investigation may reveal that different base growth rates are 
appropriate for different ecosystem types.  

Rt is the rain in the current time step. As mentioned above, our data are calendar 
monthly totals and we assume consistent daily rainfall for each day within that month. 
This is, of course, wildly unrealistic. We justify this assumption by thinking of this 
more as soil moisture, which is a better predictor of plant growth (see Nicholson et 
al., 1990). Soil moisture will be highly correlated with rainfall, but much less volatile. 
The parameter ‘a’ controls how strongly rainfall alters the growth rate. 

Vt is the vegetation on the parcel at the present time. The idea here is that more 
vegetation requires more moisture to maintain a positive growth rate. Thus, if the 
vegetation requires more rain than is available (bVt > aRt), the growth rate goes 
negative and the amount of vegetation available will shrink. As with ‘a’, the 
parameter ‘b’ controls the water demands of the vegetation and the importance of this 
term. 

Finally, Q is the quality of the land. This is an empirically derived, catch all 
measure that accounts for such things as elevation, ecosystem type, soil type, 
subsurface hydrology and anything else that alter the way that vegetation relates to 
rainfall. We derive Q for each parcel by performing a simple uni-variate regression 
for each parcel using average rainfall as the independent variable and average NDVI 
as the dependent variable and then using this regression to predict average NDVI 
from average rainfall. Subtracting predicted average NDVI from observed average 
NDVI (i.e. the residual) gives a measure of land quality. Where more vegetation 
grows than one would expect from the given rainfall, the land can be said to be good. 
Where less grows, the land is less good. While there are many ways that this measure 
might be incorporated into the model, we have simply used it to further modify the 
level of rain required to maintain a positive growth rate. The parameter ‘c’ controls 
how strongly land quality impacts vegetation growth. 

3   Results and Analysis 

The vegetation growth sub-model produces general agreement with observed NDVI 
in a wide variety of situations. While formal validation has yet to be done (and is 
beyond the scope of this paper) we present graphs of several representative individual 
parcels comparing predicted to observed NDVI along with rainfall in Figure 1. 

To examine the performance of the sub-model in different climatic conditions, we 
present three graphs comparing model output to NDVI data (see Figure 1). Graph ‘a’ 
shows a very dry area near Lake Turkana in Northern Kenya. Graph ‘b’ shows a 
moderate area near the coast in Somalia. Graph ‘c’ shows a farmed area in the lush 
hills of Burundi.  It should be noted that the NDVI data is somewhat noisy and 
contains occasional zero values which appear as single-period downward spikes. 



These are almost certainly artifacts of data collection or data processing and are not a 
target of the modeling effort.  

We find that the growth model, as presented, produces reasonable fits in most 
ecosystem types. The size of the spikes and dips in vegetation levels associated with 
wet and dry periods generally correspond to those observed. Also, the timing of these 
spike and dips is approximately accurate in most cases. While visual inspection of a 
few pixels does not constitute formal validation, it provides us with some confidence 
that our functional form is adequate and that further investment in more formal 
calibration and validation is warranted.  

 

 
Fig. 1. Observed and simulated vegetation with rainfall for three individual 1km2 parcels in 
different climatic regions of the study area. Time intervals are at 16 day periods, the frequency 
with which NDVI data is collected and spans the years 2001 to 2008. (a) a dry area near Lake 
Turkana in Northern Kenya; (b) a moderate area near the coast in Somalia; (c) a farmed area in 
the lush hills of Burundi.  

4   Discussion 

While the sub-model presented here has only loose basis in biological and ecological 
first principles, it is quite simple and produces results that appear (at this point in our 
analysis) to be valid for the application for which the sub-model is intended. We are 
seeking to model environmental stresses and how they reverberate through the social 



system in a large part of Africa, resulting in displacement of people, conflict between 
these people, pressure on international borders, changes in the legitimacy of 
governments, etc. In order to achieve this goal, we need a vegetation growth sub-
model that captures the general dynamics of plant growth in Eastern Africa while 
abstracting from the details of particular ecosystems and running quickly enough to 
enable the rest of the model sub-components to be added while still running on the 
available hardware and software platforms. 

It is worth noting that the functional form of the sub-model evolved as a result of 
an iterative verification and validation process. Our initial prototype growth sub-
model, was taken from our earlier HerderLand model (Kennedy et al., 2010), which 
did not perform well in the context of a much broader set of ecological conditions and 
real rainfall data used within RiftLand. This failure, however, was not apparent to us 
until we started critically examining its performance on individual land parcels. Once 
the problem was identified, we rebuilt the sub-model in MatLab to facilitate rapid 
adjustment and testing. By comparing the vegetation output of representative parcels 
with NDVI data, we were able to quickly form and test new hypotheses about the 
relationship between rainfall and vegetation growth and to quickly focus in on the 
most significant issues in the model. 

It is important to point out that this is a fundamentally empirical model - it is 
descriptive rather than process oriented. If our goal were to understand vegetation 
growth, then this model would not serve us well. However, our goal is not to 
understand vegetation growth, but rather to understand environmental stress, 
displacement, and conflict. The model needs to serve only as a description of the 
behavior of the vegetation - not as an explanation for this behavior. Descriptive 
models of this sort can sometimes outperform process-oriented models, particularly 
when the first principles of the system in question are not fully captured (Haefner, 
2005). 

The next steps for this model include more formal calibration and rigorous 
quantitative validation (in the vain of authors such as Pontius et al., 2008; Visser and 
Nijs, 2006). Finally, we will merge this sub-model with the full RiftLand model 
including agents with pastoral and farming behavior. This will require recalibration of 
the sub-model as we endogenize human impact on vegetation. If our models of 
human/environment interaction are performing well, it should be possible to achieve 
better fits with human activity represented than without. The ability of the 
human/environment interaction sub-models (herding and farming) to improve the 
performance of the vegetation sub-model will serve as a check on the validity of all 
three sub-models and on their interactions. 

While this sub-model is not, in itself, an example of computational social science, 
the environmental dynamics that it produces are essential to the success of a large 
human-environment interaction model such as RiftLand.  A massive social science 
model of this makes unique demands of environmental sub-models, requiring them to 
be relatively robust, yet simple and lightweight.  For this reason, we believe the model 
presented here to be uniquely suited to social science modeling.  A model in 
computational ecology would likely be much more detailed, but also more complex, 
more computationally intensive, and possibly less robust across different ecosystem 
types.  The contribution here, therefore, is an approach to modeling ecology that is 



lightweight and robust enough to produce a meaningful environment over which the 
social science components of the RiftLand model can operate. 
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