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Abstract1

We analyze how disease spreads among different age groups in an agent-based com-2

puter simulation of a synthetic population. Quantifying the relative importance of differ-3

ent daily activities of a population is crucial for understanding the disease transmission4

and in guiding mitigation strategies. Although there is very little real-world data for these5

mixing patterns, there is mixing data from virtual world models, such as the Los Alamos6

Epidemic Simulation System (EpiSimS). We use this platform to analyze the synthetic7

mixing patterns generated in southern California and to estimate the number and du-8

ration of contacts between people of different ages. We approximate the probability of9

transmission based on the duration of the contact, as well as a matrix that depicts who10

acquired infection from whom (WAIFW). We provide some of the first quantitative esti-11

mates of how infections spread among different age groups based on the mixing patterns12

and activities at home, school, and work. The analysis of the EpiSimS data quantifies13

the central role of schools in the early spread of an epidemic. Our results support the hy-14

pothesis that schools are the most likely place for early transmission and that mitigation15

strategies targeting school-aged children are one of the most effective strategies in fighting16

an epidemic.17

1 Introduction18

The spread of infectious diseases depends upon the contact patterns among people in the pop-19

ulation. Mathematical models predicting the spread of a disease that depend upon this contact20

structure must accurately account for the mixing patterns within the population. Once the21

relationship between the disease spread and the contact structure in understood, the infor-22

mation can be used to identify activities where the disease is most likely to be transmitted23

and to indicate where interventions might be most effective. The lack of detailed survey data24

quantifying how people of different ages mix has been one of the limiting factors for accurately25

modeling disease transmission.26

Although there is limited data available on the contact patterns in the real-world [9, 18,27
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22], there are sophisticated computer simulations that incorporate realistic mixing patterns to28

match real-world behavior [21]. We analyze the social mixing and contact patterns in a virtual29

world created by the stochastic agent-based model, Los Alamos Epidemic Simulation System30

(EpiSimS) [7, 11, 21], to approximate the detailed contact patterns in the real-world. We then31

combine these contact patterns with estimates for the susceptibility and infectiousness of the32

individuals in the population to better understand the roles of social mixing in disease spread.33

This approach can also be used to estimate the impact on the spread of diseases caused by the34

population changing behavior in response to a deadly disease.35

The importance of accurately accounting for the contact structure in disease modeling is36

evident by noting how disease transmission models based on homogeneous mixing assumptions37

can greatly overestimate the speed of transmission [21]. The mathematical foundation has been38

well developed for epidemic models where there is strong biased mixing between different age39

groups. The non-random mixing formulation include restricted mixing, proportional mixing,40

preferred mixing, selective mixing, and non-proportionate mixing [2, 14, 15]. These non-random41

mixing models all require knowledge of the existing mixing patterns in the population.42

Even though biased mixing epidemic models have been developed, most existing predictive43

models do not include a detailed account for the mixing between different age groups. One44

reason is that there is little data to quantify how people of different ages spend time together.45

Using age as a metric of mixing is a natural approach since the mixing between ages is highly46

biased, the course of the disease is often age dependent, and the behavior of the population47

(e.g., work, school, and play) is directly correlated with age [8]. This paper will provide data for48

the underlying age-based contact structure that can be directly incorporated into non-random49

mixing models.50

We used the EpiSimS computer platform to create a virtual world of people going about51

their daily activities in southern California. The synthetic population was constructed to sta-52

tistically match the 2000 population demographics of southern California at the census tract53

level, consisting of 18.8 million individuals living in 6.3 million households, with an additional54

938,000 locations representing actual schools, businesses, shops, or restaurant addresses. Each55
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person, as an agent in the simulation, is assigned a schedule of activities to be undertaken56

throughout the day. There are eight types of activities: home, work, shopping, visiting, social57

recreation, passenger server, school, and college; plus a ninth activity designated other. In-58

formation about the time, duration, and location of activities is obtained from the National59

Household Transportation Survey [U. S. Department of Transportation 2003]. The integration60

of the population, activities, and geo-referenced locations forms the dynamic social network in61

EpiSimS.62

We used the social network generated for southern California to find, by activity, the aver-63

age number of contacts per day, the probability of transmission based on the duration of the64

contact, as well as the who acquired infection from whom (WAIFW) matrix. From the WAIFW65

matrix, we can determine which groups are most susceptible to infection from other groups. We66

stratified the probability of infection by activity, which allows us to draw conclusions regarding67

activity driven mitigation strategies. Our results show that children are more susceptible than68

adults, as has been seen in previous research [1, 5, 16, 22]. Furthermore, we show that school-69

aged children are more likely to be infected at school than any other activity while adults are70

more likely to be infected at home. Understanding disease dynamics within a population and71

the activities where people are most likely to become infected, allows us to develop targeted72

mitigation techniques. Our hope is that the results of our study can be used in mathematical73

models for more accurate estimations of interventions necessary to achieve control, which could74

lead to a reduction in costs directly associated to epidemic control.75

2 Methodology76

Following the approaches developed in Del Valle et al. [5], we used EpiSimS, a stochastic77

simulation model, to estimate the number and average duration of daily contacts generated by78

the population in southern California. EpiSimS is used to simulate movement, activities, and79

social interactions of individuals based on actual data [7, 11, 21]. The synthetic population for80

the virtual world is created with the same demographics as the real population as determined81
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by the 2000 U.S. Census Data, including: age, household income, gender, composition of the82

household, and population density.83

Schedules of daily activities were obtained from the National Household Transportation84

Survey (NHTS) based on thousands of households. Each person in the simulation was assigned85

a sequence of daily activities based on their demographics and their role within their household.86

The activities consist of: working, staying at home, shopping, visiting, socializing, going to87

school, going to college, and other. However, people may deviate from their schedule based on88

reactive events such as closures or disease.89

In addition, EpiSimS uses publicly available land use data to assign locations where all90

the activities take place. While publicly available land use data gives the number of people91

at a location and the type of activity, the National Household Transportation Survey gives92

information on the travel time and mode of transportation between activities [5]. For example,93

based on where a child lives, and how long it takes them to get to school, EpiSimS assigns94

them to an appropriate school. EpiSimS integrates all this information into a computer model95

to estimate a second by second record of each individual’s activities for the day. Finally, the96

social network, which includes the number of contacts and duration of contacts at each activity,97

emerges from the simulation.98

Disease transmission events can only occur between individuals that occupy the same room99

at the same time. Nevertheless, each contact has a weight based on the duration of the contact,100

which in turns modifies the probability of transmission. This detail in disease transmission101

makes EpiSimS more realistic than macro-scale simulations or other micro-scale simulations102

where transmission is instantaneous, rather than time-dependent.103

The core of this complex epidemic model is the contact structure of the population being104

modeled. It is through this contact structure that the disease passes from individual to indi-105

vidual and can then be used to predict where the disease is most likely to be transmitted. Also,106

the structure can be used to define the contact mixing patterns in other disease models that107

do not have the extensive social contact structured used by EpiSimS.108
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3 Contact Structure Analysis109

We analyzed the population of southern California, which included the counties of Los Angeles,110

Orange, Riverside, San Bernardino, San Diego, and Ventura. The population consists of about111

18.8 million, ranging between 0 and 90 years of age with a median age of 32 and a mean age of112

33. A breakdown of the population reveals that preschoolers (ages 0 to 4) are 8.1%, school-aged113

children (ages 5 to 18) are 22.8%, adults (ages 19 to 65) are 59.8% while seniors (ages 65 and114

older) are the final 9.2% of the population [21]. The distribution of the ages in Figure 1 reveals115

a bimodal distribution in the data with the highest peak occurring around the age of 8 and the116

second, smaller peak, occurring around the age of 35. This bimodal effect may be the results117

of the increase in population due to the baby boomers and their offspring.118

3.1 Total Number of Contacts by Activity119

We denote the total number of contacts between age groups, matrix Cij. This matrix is sepa-120

rated into children’s contacts at school and the rest of the population’s contacts, which excludes121

the contacts between children at school. Figure 2 shows that the aggregated number of contacts122

between children is on the order of 1,000,000 (top), while the remaining contacts is on the order123

of 10,000 (bottom). These are symmetric matrices since if a person of age i has contact with124

a person of age j, then a person of age j had a contact with a person of age i. The diamonds125

along the diagonal on Figure 2 (top) illustrates how children are far more likely to have contacts126

with their own age than the adult population. Figure 2 (top) shows that contacts at school127

occur most frequently between children of the same age. This is due to the stratification, or128

grouping, of the children into classes at school by age group.129

Figure 2 (bottom) shows the number of contacts outside of school. Since children’s contacts130

along the diagonal dominate this plot, we removed them to appreciate the dynamics outside131

the diagonal. In the lower plot, adults are seen to have contact with other adults over a broad132

range of ages. Also, note that the age-gap between children having contact with their parents133

is reflected in the plot. We see that children have the most contacts with children of similar134
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age and fewer contacts as the difference between their ages increases. The contacts between135

middle age adults, ages 20 - 60, have a block pattern in that adults tend to have lots of contacts136

with adults, with most occurring between adults of the same age. As with contacts between137

children, adults tend to have more contacts with adults of the same age and fewer contacts as138

the age difference increases. This assortive (like with like) mixing pattern has been seen by139

Beutels et al. [4], Del Valle et al. [5], Edmunds et al. [9], Glasser et al. [12], Hens et al. [13],140

Mossong et al. [18], Newman and Girvan [19], and Wallinga et al. [22]. An exception to this141

is the weak coupling, or larger number of contacts, that occurs between adults and children,142

probably due to parent-child relationships. This pattern of strong diagonal and weak coupling143

is consistent with previous studies including Del Valle et al. [5], Glasser et al. [12], Hen et al.144

[13], and Mossong et al. [18].145

3.2 Average Duration of Contacts by Activity146

We denote matrix Tij, the average duration of contacts per day in hours. The average duration147

of contacts is the duration of all contacts divided by the total number of contacts, matrix Cij.148

As with the total number of contacts, the average duration of contacts is also a symmetric149

matrix. Notice how the plots in Figure 3 confirm that children have the longest contacts with150

other children their own age, while adults have, on average, shorter contacts over a much151

broader age range.152

Figure 3 (top) shows that the average duration of contacts at home vary widely with age.153

Contacts between preschoolers (ages 0 - 4) are the longest with the average duration being154

around 10 hours. The shortest average contact durations occur between 80 - 90 year olds with155

an average of 5.5 hours. This may be due to the fact that more older people live alone.156

Figure 3 (bottom) shows the average duration of contacts at all the activities combined.157

Note that the average contact duration between children (ages 18 and under) are the longest.158

As seen in the total number of contacts between adults, we see a block for adults (ages 20 - 60)159

with an average contact duration of around 5 hours. This is probably from contacts between160

people at work or from spouses in the same household. We observe a weak coupling, as seen in161
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the total number of contacts, between children and adults with an average contact duration of162

around 6 hours, probably due to the parent-child relationship.163

3.3 Probability of Transmission by Activity164

The probability of transmission, matrix Pij, is based on the duration of contacts between a165

susceptible group i and an infected group j. This paper uses the same approach as in [5] where166

Pij = 1 − e−σTij and σ is the mean number of transmission events per hour of contact between167

fully susceptible and fully infectious people. To allow direct comparison with [5], σ = 0.2 is168

used. Since this is a Poisson probability distribution with parameter σt, the longer the contact,169

the greater the probability of transmission.170

In the top plot of Figure 4, we see the probability of transmission at home. The probability171

of transmission between preschoolers (ages 0 - 4) is the highest at around 0.9 and is due to172

the long duration of their contacts. Between adults, the probability of transmission tends to173

decrease with increasing age.174

In the bottom plot of Figure 4, we see the probability of transmission at all activities, which175

reveals two blocks and a weak coupling. For the weak coupling between children and adults,176

there is a probability of about 0.7. The block for adults (ages 20 - 65) has a probability of177

transmission of around 0.6. For the block with children, transmissions between school-aged178

children have a probability of 0.7, while preschoolers have a probability of about 0.8. This179

is in agreement with research that shows people tend to become infected by others from the180

same age group [16]. This is also consistent with researchers including Mikolajczyk et al. [17]181

and Mossong et al. [18], which concluded that vaccination of children is an effective mitigation182

technique in controlling the spread of an infection.183

3.4 Who Acquired Infection From Whom by Activity.184

The transmission matrix, also known as the who acquired infection from whom (WAIFW)185

matrix, represents the rate βij at which a susceptible person from group i will be infected by an186

infectious person from group j. The formula for calculating βij is γij ×αi× ξjk×Pij, where Pij187

8



is the probability of transmission matrix (see Probability of Transmission by Activity section).188

γij, or the average number of contacts per day, can be calculated by taking Cij, which is the189

total number of contacts per day, divided by Ni, where Ni is the total population size in age190

group i. In order to simplify the calculations and in keeping with [5], we will assume that αi,191

or the susceptibility, and ξjk, or the infectivity, are both 1. Notice, that this matrix is not192

symmetric because the susceptibility and infectivity can vary with age (through for comparison193

we have chosen equal susceptibility and infectivity) and that Ni does not, in general, equal Nj.194

For example, the lack of symmetry means that the transmission rate from a 35 year old to a195

10 year old is not the same as the transmission rate from a 10 year old to a 35 year old.196

Figure 5 (top left) shows the transmission rates at home. The highest transmission rate197

occurs between children of differing ages. This is probably due to transmission between siblings198

who tend to be of different ages. There is also a high transmission rate among adults of a similar199

age, probably due to spouses of a similar age. Finally, there is a high transmission rate between200

children and adults.201

Figure 5 (top right) shows the transmission rates at school. Transmission rates among202

children of the same age are by far the largest. This is due to the stratification in EpiSimS203

placing children of the same age in the same classroom at school. The implication of this finding204

is that the largest transmission rates occur between teenagers. This is consistent with actual205

data from the A(H1N1) virus outbreak in Japan. Of the 361 infections between May 16, 2009206

and June 1, 2009, 79.5% of these were in teenagers between ages 10 and 19 [20].207

Figure 5 (bottom left) illustrates the transmission rates for shopping. The WAIFW contour208

plot for shopping activities shows highly non-symmetrical transmissions. The largest transmis-209

sion rate is from middle age adults (ages 20 - 60) to older adults (ages 70 - 90). This is probably210

because older adults have fewer contacts and shorter contact duration at home and work and211

therefore have more exposure to people out shopping than younger people. Additionally, older212

adults may have a high transmission rate from middle age adults who are more likely to be213

shopping or working at the shops than children.214

Figure 5 (bottom right) shows the transmission rates at work. Adults have the highest215
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transmission rate at work. This high rate for adults (ages 20 - 60) is expected since most216

workers are in this age range.217

Looking at all activities in Figure 6, we see the block between adults and the weak coupling218

between children and adults. In this plot, the transmission rates between children have been219

removed because the transmission rate between children is dominated by school (see Figure 5)220

and are significantly larger than transmission rates between any other group. For the adults,221

the transmission rate of about 0.2 is highest among adults of the same age and decreases with222

increasing age differences. The exception is where the weak coupling occurs and there is a223

transmission rate of about 0.1 both from adults to children and from children to adults.224

Table 1 shows the aggregated daily transmission rates for the following ages groups: 0 - 4,225

5 - 12, 13 - 19, 20 - 29, 30 - 39, 40 - 49, 50 - 59, 60 - 69 and 70 - 90. This is an aggregation of226

the βij transmission matrix in Figure 6. For the aggregated transmission rates by activity see227

Table 2 for home, Table 3 for school, and Table 4 for work.228

3.5 Comparisons to Portland229

A comparison between our southern California population and the previous Portland study in230

[5] shows similarities and differences. The bimodal effect that we see in the age distribution231

of the southern California population in Figure 1 is reversed for the Portland population. The232

Portland study, in [5] is not broken down by individual activity. Therefore, the only results233

that will be compared is the probability of transmission for all activities. One of the reasons234

for comparison is that southern California has more than 10 times the population of Portland.235

Therefore, we are able to see if the results for smaller populations are similar to those of a much236

larger population.237

Some of the differences in the youth population can be attributed to the anomaly that the238

Portland data was based on a less detailed EpiSimS virtual world that did not stratify schools239

by classrooms (i.e. for Portland, a 5 year old was just as likely to have a contact with a 13 year240

old as another 5 year old) shown in Figure 7. This lack of stratification was corrected in the241

current EpiSimS population for the southern California data. Therefore, results for children242
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will vary significantly in that contacts between children of the same age will not dominate in243

Portland data as it did in the southern California data.244

Even with the differences in the two population models, the probabilities of transmission245

for Portland and southern California show similar results. For Portland, the probability of246

transmission between adults and children is about 0.8 while for southern California it is about247

0.7. The probability of transmission between adults is about 0.5 for Portland and about 0.6 for248

southern California. Though these numbers are different, the pattern of the two blocks, one249

between adults and one between children, and the weak coupling between children and adults250

is present in both analyses.251

3.6 Infections by Activity252

Table 5 shows the probability of being infected at different activities. Infected children were253

most likely infected at school, followed by home, and then social recreation, or shopping. In-254

fected adults are most likely to have become infected at home, followed by work and then255

social recreation, or shopping. A study done by Los Alamos National Lab [7] found that 44%256

of infections are acquired at home followed by 39% at work and 19% at school in southern257

California. The Los Alamos study results differ from this study because though using the same258

data the break down by age was not done. Edmunds et al. [10] speculated that the risk of259

infection is probably greater at home than at work. We would expect to see a smaller number260

of senior adults becoming affected at work but this may be a result of using the household261

transportation data along with a biased smaller data set towards the working population.262

4 Summary, Discussion, and Conclusions263

Using data from EipSimS, we found the average number of contacts per day followed by the264

probability of transmission based on the duration of the contact. From the probability of265

transmission data, the WAIFW matrix was calculated. The WAIFW matrices may be used in266

deterministic models that stratify the transmission rates by age. This was done for all activities267
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combined as well as broken down by activity (home, school, shopping, and work) for southern268

California. When analyzing all activities combined, we see two blocks occurring in the matrices,269

one between adults and one between children, as well as the weak coupling between children270

and adults, probably due to the parent-child relationship.271

The data from southern California shows results similar to those from Portland, Oregon.272

In both sets of data, we see the blocks between children and between adults, as well as weak273

coupling between children and adults. Finally, we were able to show which activities are more274

likely to generate secondary infections. For adults, the activity with the highest probability275

is home followed by work. For children, the activity with the highest probability is school276

followed by home. Therefore, mitigation techniques targeting children at schools could help277

halt the spread of disease [6]. This is consistent with researchers having found that mass278

vaccination would not be necessary [3]. Researchers have also found that vaccinating 80% of279

children is almost as effective as vaccinating 80% of the population [16].280

If the models predictions are used to guide public health policy, models should account for281

the contact patterns of a population and consider the impact of behavioral changes. Our goal282

has been to provide estimates for the contact patterns of a synthetic population. Our hope is283

that these patterns can increase our understanding of the spread of emerging and re-emerging284

infectious diseases. Only after the normal contact patterns have been accurately modeled, can285

the simulations predict the impact of behavioral changes on the spread of a pathogen.286

These high-fidelity models based on the structure of interactions among individuals can287

then investigate the effectiveness of different behavior changes, from reducing specific types288

of contacts to reducing susceptibility and infectiousness though hand washing, wearing pro-289

tective masks, avoiding crowded places, and school closures. Biased mixing patterns reduce290

the spread of disease.Without accurate mixing patterns, mathematical models run the risk of291

overestimating the spread of an epdiemic.292
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Figure 1: Age Distribution of the synthetic population for southern California. For the total

population of 18,828,569 people, the mean age is 33 while the median age is 32. There are two

humps that occur, one at about 350,000 for 8 year olds and a second at 325,000 for 35 year

olds.
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Figure 2: Total Number of Contacts. (top) The number of contacts at schools are the greatest

between students of the same age due to the grouping of children into classes by age. The

largest number of contacts occurs between teenagers of the same age. (bottom) The number of

contacts at all activities has the diagonal for children removed to show the contacts outside of

school. This plot shows that in general, as the age difference increases, the number of contacts

decrease. The exception is the weak coupling between children and adults, probably due to the

parent-child relationship.
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Figure 3: Average Duration of Contacts. (top) The average duration of contacts at home shows

a large variation with age. The average duration of contacts between ages 0 - 4 is about 10

hours per day while between older adults (ages 80 - 90) it is only about 5.5 hours per day.

(bottom) The average duration of contacts at all activities shows the longest contact durations

occurs between children (ages 18 and under) with as much as 9 hours per day, followed by the

duration between children and adults (ages 20 - 60) at around 6 hours, and finally the duration

between adults (ages 20 - 60) at about 5 hours per day.
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Figure 4: Probability of Transmission (top) At home, the highest probability of transmission

occurs between preschoolers (ages 0 - 4) at 0.9 and is lowest between seniors (ages 80 - 90) at

around 0.65. (bottom) At all activities, the highest probability of transmission occurs between

preschoolers (ages 0 - 4) at around 0.8. The probability of transmission between school-aged

children (ages 5 - 18) is about 0.7 as is the probability of transmission between adults (ages 20 -

50) and children, probably due to the parent-child relationship. The probability of transmission

between adults (ages 20 - 65) is about 0.6.
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Figure 5: Transmission Matrix (WAIFW) (top left) At home, the highest transmission rates are

between children of different ages, probably siblings, followed by transmission between adults

and children, and finally between adults of similar ages. (top right) At school, the largest

transmission rates are among students of the same age, with teenagers being the largest. Notice

these rates are significantly higher than at home, work, and shops. (bottom left) At shops, the

highest transmission rates are from middle age adults (20 - 60) to older adults (ages 70 - 90)

though this rate is much lower than the transmission rates at home or work. (bottom right) At

work, the highest transmission rates are between adults (ages 20 - 60) which should be expected

because they compromise the majority of the work force. Even the highest transmission rates

at work are lower than the rates at school but still higher than at shops.
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Figure 6: Transmission Matrix (WAIFW) Total. The transmission rates of children at school

dominate, so they have been removed from this plot. The transmission rates are high between

children and adults (both from children to adults and adults to children) though the highest

rates are between adults (ages 20 - 55) of a similar age.
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Figure 7: Portland Total Number of Contacts for Children. This is much different than the

results seen for southern California in Figure 2. This is due to the stratification used in the

southern California data.
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Table 1: Transmission matrix (WAIFW) of the daily number of adequate contacts per person

between the aggregated age groups at all activities. The highest transmission rates are between

teenagers (ages 13 - 19).

Age 0-4 5-12 13-19 20-29 30-39 40-49 50-59 60-69 70-90

0-4 0.602 0.083 0.042 0.057 0.069 0.030 0.013 0.006 0.002

5-12 0.077 0.744 0.072 0.046 0.091 0.059 0.019 0.009 0.003

13-19 0.046 0.083 0.913 0.057 0.082 0.107 0.041 0.015 0.005

20-29 0.064 0.055 0.058 0.176 0.151 0.146 0.099 0.039 0.011

30-39 0.069 0.096 0.072 0.131 0.173 0.135 0.087 0.039 0.011

40-49 0.033 0.068 0.106 0.143 0.153 0.174 0.098 0.040 0.013

50-59 0.021 0.034 0.059 0.143 0.146 0.143 0.123 0.045 0.013

60-69 0.017 0.026 0.035 0.091 0.103 0.095 0.070 0.050 0.013

70-90 0.010 0.015 0.021 0.042 0.048 0.049 0.036 0.022 0.013
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Table 2: Transmission matrix (WAIFW) of the daily number of adequate contacts per person

between the aggregated age groups at home. The highest transmission rate is between children

(ages 5 - 12).

Age 0-4 5-12 13-19 20-29 30-39 40-49 50-59 60-69 70-90

0-4 0.063 0.072 0.028 0.045 0.056 0.018 0.006 0.003 0.001

5-12 0.067 0.086 0.050 0.031 0.073 0.043 0.010 0.004 0.000

13-19 0.030 0.057 0.067 0.023 0.041 0.063 0.017 0.004 0.002

20-29 0.051 0.038 0.024 0.056 0.019 0.021 0.016 0.004 0.001

30-39 0.056 0.078 0.037 0.017 0.043 0.014 0.006 0.005 0.001

40-49 0.020 0.049 0.064 0.021 0.015 0.042 0.011 0.004 0.002

50-59 0.009 0.017 0.024 0.022 0.010 0.014 0.036 0.008 0.002

60-69 0.007 0.011 0.010 0.010 0.012 0.009 0.012 0.022 0.004

70-90 0.003 0.000 0.006 0.004 0.005 0.008 0.007 0.006 0.006

Table 3: Transmission matrix (WAIFW) of the daily number of adequate contacts per person

between the aggregated age groups at school. The highest transmission rate is between children

(ages 5 - 12). Notice the transmission rates at school are much higher than at home for children.

Age 0-4 5-12 13-19 20-29 30-39 40-49 50-59 60-69 70-90

0-4 0.531 0.000 0.000 0.002 0.002 0.002 0.001 0.001 0.000

5-12 0.000 0.641 0.001 0.004 0.005 0.005 0.003 0.001 0.000

13-19 0.000 0.000 0.618 0.004 0.005 0.005 0.003 0.001 0.000
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Table 4: Transmission matrix (WAIFW) of the daily number of adequate contacts per person

between the aggregated age groups at work. Notice the high transmission rates between adults

(ages 20 - 60) which is consistent with them making up the majority of the working population.

Age 0-4 5-12 13-19 20-29 30-39 40-49 50-59 60-69 70-90

0-4 0.000 0.000 0.000 0.002 0.002 0.002 0.001 0.000 0.000

5-12 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000

13-19 0.001 0.001 0.002 0.014 0.015 0.014 0.010 0.004 0.001

20-29 0.004 0.007 0.018 0.108 0.120 0.113 0.075 0.030 0.007

30-39 0.004 0.007 0.017 0.104 0.117 0.111 0.073 0.029 0.007

40-49 0.005 0.008 0.019 0.111 0.125 0.119 0.079 0.031 0.007

50-59 0.005 0.008 0.019 0.109 0.123 0.117 0.077 0.030 0.007

60-69 0.003 0.005 0.011 0.068 0.076 0.073 0.048 0.019 0.005

70-90 0.001 0.002 0.004 0.026 0.029 0.028 0.018 0.007 0.002

26



Table 5: If infected, where were you most likely infected? Children ages 19 and under are most

likely to have become infected at school followed by home. Adults were most likely to have

become infected at home followed by work.

Age Home School/Work Social Recreation / Shop

0 - 4 37.95% 48.19% 13.85%

5 - 12 37.69% 48.95% 13.36%

13 - 19 38.73% 46.73% 14.53%

20 - 29 46.56% 36.00% 17.44%

30 - 39 46.40% 36.55% 17.05%

40 - 49 46.09% 36.59% 17.32%

50 - 59 45.60% 36.50% 17.90%

60 - 69 45.48% 35.83% 18.68%

70 - 90 45.62% 35.18% 19.21%
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