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Abstract. An important dynamic among interacting knowledge workers is the 

transition from cognitive convergence (a positive group phenomenon) to 

collapse (which can lead to overlooking critical information). This paper 

extends previous studies of this subject in two ways. 1) We place agents in 

distinct social groups and vary within-group affinity. 2) We provide exogenous 

drivers of interest. We exhibit a metastable configuration of this system with 

three phases, and show how to distinguish convergence from collapse. Then we 

use this metric to explore the system’s dynamics, over the space defined by 

social affinity and precision of queries, and under a range of different functions 

for the influence that an interaction partner has on an agent. 
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1   Introduction 

Humans form interests by interactions with peers (collaboration) and with information 

sources (search). The pattern of interactions emerges from a person’s environment 

(social network, access to information sources) and current interests. In turn, 

interactions shape the environment in a complex feedback process. Such dynamics 

can lead to emergent collective cognitive effects at the system level (across groups of 

people) that can dominate individuals’ interest evolution without a person’s being 

aware of them. One common phenomenon is alignment of interests, sometimes called 

“consensus formation” [6] or “collective cognitive convergence” [12,13]. This 

phenomenon contributes to the power of collaboration, but it poses a threat if 

convergence turns into collapse, blinding the group to new ideas. 

Such emergence of global features through feedback loops among autonomous 

actors in a shared environment is a common feature of stigmergic systems [15]. While 

stigmergy as a “design pattern” is best known in systems such as social insect 

colonies, humans also coordinate through simple interactions in a shared environment 



to accomplish a common goal [11]. A shared social and information environment 

couples individuals’ interest formation. One agent may select an interaction partner 

(person or information source) based on her current interests. The interaction may 

change not only her interests, but also her relations, affecting subsequent interaction 

decisions by others. 

We seek to measure cognitive convergence and modulate it by making appropriate 

changes to a group of knowledge worker using agent-based models. The models to 

date are driven solely by the initial interests of the agents, and social connections, if 

represented at all, form a connected graph among all agents. The specific setting that 

motivates our model requires two extensions. In many government and business 

settings, a population of analysts formulates recommendations for policy makers. 

While internal discussions are an important part of their work, they also consult 

exogenous information, in the form of a dynamic collection of documents. 

Furthermore, the population is divided into separate communities, within which 

analysts interact preferentially. Each community starts with a tasking, a description of 

the subject that they are to study. Exploring the dynamics of such a system requires 

two extensions: interaction of disjoint social groups, and the influence of exogenous 

information.  

Section 2 surveys previous work on interest dynamics. Section 3 outlines our 

model and formal measures on its behavior. Section 4 reports experiments over 

varying levels of group affinity and varying query precision. Section 5 concludes. 

2   Previous Research On Interest Dynamics 

One recent review of computational studies of consensus formation [5] traces relevant 

studies back more than 50 years, including both analysis and simulation. These 

studies differ in the belief model and the topology, arity, and preference of agent 

interactions (Table 1).  

An agent’s belief can be a single variable or a vector, with real, binary, or nominal 

values. Vector models can be either independent, in which an agent can hold any 

combination of beliefs concurrently, or correlated, with consistency constraints 

beliefs.  

Different topologies can constrain interactions. Some models constrain interactions 

by agent location in an incomplete graph, usually a lattice (though one study[8] 

considers scale-free networks). In others any agents can interact (the “choice” model). 

Interaction arity can allow agents to interact only two at a time, or as larger 

groups. 

The probability of interaction may be modulated by similarity-based preference. 

Our work extends this field in two ways. 1) It supports multiple disjoint social 

networks. 2) It provides exogenous influences, in the form of a collection of 

documents that agents query. These extensions model groups of agents collectively 

analyzing information from a changing collection of sources.  



3   An Agent-Based Model 

This section describes our model and the metrics we use to monitor its dynamics. A 

wide range of configuration parameters are available to configure a scenario 

(discussed under “model components”) and govern its execution (discussed under 

“model execution”). 

3.1   Model Components 

Our model has five components. 

Topic Space.—Analysts and documents live in an abstract Euclidean space 

constructed from a set of topics. In the real world, a topic is a probability distribution 

over lexicographic terms (e.g., domain-relevant key words), constructed from a large 

collection of relevant documents (using, e.g., Latent Dirichlet Allocation[3]).The 

topic space has dimension equal to the number of topics, with a range of [0, 1] on 

each axis. A given location is a Topic Model Vector (TMV). A theme is a region in 

topic space. We generate analysts or documents associated with a theme by sampling 

a Gaussian with configurable mean and variance, resampling when the tails yield a 

location with a coordinate outside of [0, 1].  

Social Network.—Analysts belong to (static) groups whose members are more likely 

to interact with each other than with members of other groups. This structure models 

organizational and geographical constraints that externally influence analyst 

interaction. Additional interaction preferences arise from similarity of analyst interest.  

Table 1.  Representative studies in interest dynamics.  

Study Belief Topology Arity Preference? 

Krause [6] Real scalar Choice Many Yes 
Sznajd-Weron 
[16] 

Binary scalar Lattice Two No 

Malinchik [9] Real scalar 
Lattice, Random, or 
Hierarchy 

Two No 

Deffuant [4] 
Real scalar Choice Two Yes 
Binary vector, 
independent 

Choice Two Yes 

Axelrod [1] 
Nominal vector, 
independent 

Lattice Two Yes 

Bednar [2] 
Nominal vector, 
correlated 

Choice Many No 

Lakkaraju [7] 
Real vector, 
correlated 

Complete, Lattice, 
Regular, Small-world 

Two No 

Parunak [12] Binary vector Choice Many Yes 

This paper 
Real vector, 
independent 

Arbitrary, 
Unconnected 

Two Yes 



Document.—Our model represents exogenous influences on agent interests in the 

form of documents. A document is a TMV. Real-world document repositories 

typically contain documents from different sources and with different concerns. We 

model this clumping of documents with the notion of a theme, and generate a 

population of documents by sampling from several themes with specified means 

(locations in topic space) and variances. We model the arrival of new information 

during the runtime of the analyst agents as the delayed introduction of documents 

sampled from a new theme.  

Analysts.—An analyst’s current interest is also a TMV. A community’s tasking is 

defined as a theme, and we generate a community of analysts working on a given 

tasking by sampled that theme. The central object of our study is the movement of the 

analyst’s TMV through topic space, relative to the TMVs representing documents and 

other analysts.  

Document Search.—Real-world analysts use search engines to select documents for 

review. Queries define topics of interest. To model Document Search, an analyst 

poses a subset of topics. The search weights documents by the strength of their entries 

on those topics, and probabilistically selects and returns a single document. Noise in 

this selection process models a real-world analyst’s willingness to review results that 

were not ranked first.  

3.2   Model Environment 

Fig. 1 shows the documents (small circles) and analysts (large circles with links 

indicating the social groupings) for two themes and two groups. The rim color of 

document nodes identifies the theme from which they were sampled, and the rim of 

analyst nodes shows group membership. The color of the inner document/analyst 

circle is defined by aggregating the elements of the entity’s TMV, and changes as 

analyst interest evolves. 

We dynamically determine the drawing location of documents and analysts 

through force-based graph layout, 

a form of multidimensional 

scaling. This process does not 

affect the dynamics, which take 

place in the n dimensional topic 

space. 

3.3   Model Execution 

First we configure a scenario with 

specified dimensions, analysts, 

groups and themes. Then analysts 

repeatedly choose interaction 

type, assemble interaction 

options, select interaction target, 

and execute interaction. Analysts 

document (rim = theme, center = TMV)

analyst (rim = group, center = TMV)

group 1 analysts tasked 

by document theme 1

group 2 analysts tasked 

by document theme 2 

 

Fig. 1. Visualization 



execute randomly with replacement.  

Choose Interaction Type.—The analyst chooses probabilistically whether to interact 

with another analyst or with a document. 

Assemble Interaction Options.—If an analyst is interacting with a document, its 

interaction options (possible targets for interaction in this cycle) are documents 

currently in the document space. If the agent is interacting with another analyst, its 

interaction options are other analysts, either in its own group (with probability defined 

by its Affinity) or in another randomly selected group.  

Select Interaction Target.—The analyst selects one target from the options 

assembled in the previous step. As both document content and analyst interest are 

represented as TMVs, this step is identical for documents and analysts.  

An analyst constructs a query by probabilistically selecting a subset of topics from 

its TMV, favoring high-interest topics, but adding noise (parameterized by 

temperature). Then an interaction target is selected based on the query, modeling 

search execution. The TMVs of the interaction options are sorted by their values in 

the topics of the query, thus ranking TMVs by their relevance to the given query. 

Based on that ranking, but again with noise, we select one TMV. Here the noise 

temperature models an analyst selecting one result. 

Execute Interaction.—The analyst now updates its interest model. If the analyst 

interacts with another analyst, it samples the Learning Style parameter to determine 

the personality it should assume in this interaction. The selected personality sets the 

update rule for updating each topic’s interest level as a function of the difference in 

interest on that topic between the agent and the selected interaction target. Section 0 

explores this rule. In the standard personality, the agent shifts its interest level in 

updated topics toward the interest level in the interaction target. In the curmudgeon 

personality, it shifts away from the other. If the interaction target is a document, then 

the agent always uses the standard personality.  

3.4   Performance Metrics 

We define a set of component metrics, and a single aggregate metric. 

Component Measures.—The topics in a given model span a high-dimensional metric 

space with TMVs limited to [0, 1] for each topic. As analysts update their TMVs 

through interactions, they move through this space. We measure aspects of individual 

analyst movement to detect dynamic characteristics that indicate cognitive collapse. 

The most fundamental measure is the magnitude of a single TMV update, which is 

the length of the vector between the agent’s prior and new location in each cycle. 

The length of a step in topic space conveys the absolute magnitude of the impact a 

particular interaction had on the analyst’s interest. It does not show the nature of the 

step relative to the other analysts. A second measure is the distance of the analyst’s 

location (after the step) to the mean over the TMVs of all analysts regardless of group 

affiliation. The mean TMV may not be near any analyst. Movement of analysts shifts 

the location of the mean TMV, so successive values of this measure, unlike “step-

length,” are not statistically independent. 

An Aggregate Measure.—Initial explorations based on these measures show that we 

also need to discover a directed walk, in which an agent’s successive steps are 



correlated with one another. In previous work [14], we applied information-theoretic 

(entropy) measures to detect a directed walk, but encountered idiosyncrasies from the 

specific definition of the system states whose probabilities are measured in the 

entropy calculation. For the current research, we developed an aggregate metric that 

measures the “directedness” in an agent’s movement through topic space without the 

complications of the entropy calculations. The delayed step length metric adds the 

step vectors (delta TMV) for a single agent over the most recent n cycles 

(configurable, 50 in the results reported here). The vector sum of steps of a random 

walk is on the order of n , while the vector sum of steps that generally point in the 

same direction (directed walk) tends to be on the order of n. 

4   Experiments with the Model 

This section walks through an example scenario, exhibits the system’s metastability, 

derives an objective way to measure the cognitive collapse of a knowledge 

community, and uses this measure to explore the space defined by community 

affiliation and interaction with exogenous information. Our experiments explore only 

a small portion of the space defined by these dimensions, but still suggest two 

practical principles for managing convergence and preventing collapse among 

knowledge workers. 

4.1   A Representative Scenario 

We consider a small scenario with two distinct document themes and two groups of 

analysts. We sample 25 documents for each theme. One theme is the tasking (sample 

initial interest vector) for all 6 analysts of the first group, and the other theme 

initializes the 5 analysts of the second group. The documents and analysts are 

embedded in a 10-dimensional topic space. The two document themes (and thus the 

two document subsets and the two analyst groups) are distinctly different, but 

somewhat overlapping in two topics. Fig. 2 (frame 1) shows the initial layout. Each 

group is associated with a subset of the documents. Analysts in the larger (bottom) 

group have higher affinities (preference for their own group) than in the smaller 

group. 

As the simulation runs, we visualize the recent interactions of agents with other 

agents (red lines) and documents (blue lines) fading away into history (line 

transparency). The screen shots in Fig. 2 (frames 2-5)show the interactions in the four 

1 2 3 4 5
 

Fig. 2. Stages in model evolution. 



most recent cycles.  

In (2), the agents of each group that were initially spread out in their respective 

tasking theme converge on their common interest and thus form tighter clusters in 

their respective group. While there are also cross-theme/group interactions (blue/red 

lines crossing the gap in the center of the view), most interactions occur within the 

tightly clustered groups and their surrounding theme. 

In (3), interactions of low-affinity analysts with the other group eventually lead to 

the defection of two analysts from the interest pattern of the smaller group and their 

transition towards the larger group.  

In (4), once the first analyst defects from the smaller, low-affinity group, others 

follow rapidly. Eventually, all analysts abandon their interest in the upper document 

theme. 

In (5), both groups of analysts have converged on interests exemplified by the 

document set in the lower part of the screen. Interactions among analysts within a 

group are no different from Out-of-Group interactions. Interactions with documents 

are (mostly) confined to the theme on which all analysts converged. 

4.2   A Metastable Transition 

Our metrics reveal three phases of interest evolution (Fig. 3, metrics applied to a 

single analyst from the upper, smaller group). The agents from this group first remain 

in their separate interest area (Phase 1), eventually defect one-by-one to the other 

group (Phase 2), and then explore the other interest area (Phase 3).  

In Phase 1, the agent is far from the mean TMV, reflecting the initial separation of 

analysts’ interests. Short steps (most frequent) are interactions with other analysts 

from the same group (and thus similar interest) or documents near the analyst’s initial 

tasking. Medium length steps are interactions with documents from the other theme. 

We set the model parameters so that document interactions have less impact on 

analyst interest 

than analyst-to-

analyst 

interactions. The 

longest steps, and 

the least frequent, 

are interactions 

with analysts from 

the other group. 

The roughly 

constant distance 

to the mean TMV 

shows that the 

agent’s successive 

steps are not 

correlated.  

In Phase 2, the 

agent defects from 

Phase 1
(random walk far from Mean TMV)

Phase 3
(“random” walk near

the Mean TMV)

Phase 2
(“directed” walk to

the Mean TMV)

Analyst S2

 

Fig. 3. Dynamics of one analyst from top group. 



the region of its original tasking to the region occupied by the larger group. The 

distance to the mean TMV rapidly shrinks. High-frequency interactions increase in 

step length as the agent moves away from its own group, due to the TMV update rule, 

which computes larger changes for larger differences between the analyst’s TMV and 

the TMV of its interaction partner. Similarly, lower-frequency steps that correspond 

to interactions with the other document set and out-of-group analysts decrease in 

length, as the analyst moves closer to those entities. In this phase, the agent’s 

successive steps are correlated, as the rapidly falling distance to the mean TMV 

shows. 

In Phase 3, as in Phase 1, successive steps are again uncorrelated. All analysts 

occupy the same region in topic space and share a common interest in documents of 

the second document theme. The analysts’ distance to the mean TMV is small as they 

are now all tightly clustered. The analysts still interact (infrequently) with documents 

from the other theme (larger steps), but those interactions have no lasting effect on 

their relative locations. 

Fig. 4 compares “distance to the mean TMV” (blue) for a single analyst with 

“delayed step length” (green). Phase 2 is indeed characterized by a directed walk 

while Phases 1 and 3 are (generally) less directed. 

4.3   Defining and Measuring Collapse 

Informally, “cognitive collapse” is the inability of an agent or a group of agents to 

respond to new information. We can now operationalize this definition: An agent is 

cognitively collapsed if it is not in Phase 2 dynamics and if it does not return to Phase 

2 dynamics when offered qualitatively new information. 

We introduce qualitatively new information by adding documents to the model at a 

time when all agents show Phase 3 dynamics. This new document theme (located 

between the two initial themes in topic space) probes the analyst dynamics. If analysts 

in Phase 3 are converged but not collapsed, they should return to Phase 2, as indicated 

by delayed step length. 

We automate this 

detection with the 

nonparametric Mann-

Whitney U test [10] to 

compare step lengths 

before and after probe 

insertion. The baseline 

configuration has a 

query temperature of 

0.12 and an analyst 

affinity of 0.4. We 

explore parameter 

space from that point 

up to a query 

temperature of 0.32 

and an affinity of 0.9, 
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Fig. 4. Delayed step length marks Phase 2. 



and run 20 replications at each point. When each configuration reaches Phase 3, we 

insert a probe, and compute the percentage of analysts who respond (and so are not 

collapsed). Increasing the query temperature, thus exposing analysts to unexpected 

documents, dramatically reduces collapse. Surprisingly, the probability of collapse 

does not vary systematically as we change analysts’ affinity for their own group. 

4.4   Exploring the Update Rule 

Our TMV update rule translates the difference in TMV elements between an analyst 

and an interaction partner into the length of the analyst’s step (toward the partner for 

an ordinary analyst, and away for a curmudgeon). In all experiments thus far, the 

magnitude of the change in the interest in a particular topic in the TMV is 

proportional to the difference in that topic between the agent and the interaction 

target. This assumption reflects curiosity, assigning more impact to an interest very 

different from mine. An alternative model is homophily: I am more likely to move 

toward ideas that are close to my own. In real-world analysts, the correct model is 

likely to be a mixture of these two effects: interests too far from mine are threatening, 

and interests too close to mine are boring, so my response will be greatest somewhere 

in the middle.  

Fig. 5 summarizes these options. The parameter s is the hypothesized difference 

that will lead to maximum movement. When s = 0, we recover homophily, while s = 1 

yields curiosity. 

To explore the effect of the update rule, we focus on two observables in our model: 

• The convergence of the two groups; 

• The response to a probe. 

We instantiate a large number of systems for each value of s and measure the 

probabilities p(a) of convergence and p(b) that the system responds to a probe (i.e., is 

not collapsed). Fig. 6 shows the 

results for a low affinity and 

high query temperature. We 

again plot the average over 20 

random seeds for each data 

point. Low s (homophily) yields 

no interest convergence 

between the groups but 

decreasing probability of 

collapse (increasing probability 

of non-collapse). Interestingly, 

group convergence has a critical 

threshold. Thus, instead of a 

gradual rise of the convergence 

probability, the plot remains at 

0% until a critical value of s is 

reached. Then the probability of 

all analysts converging on the 

same interest region rapidly 

Cognitive

Rationale
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increases, but the analysts remain equally 

open to new information (probability of 

collapse remains low). Finally, as 

curiosity dominates (large), collapse 

becomes more common. The increase in 

risk of cognitive collapse towards the end 

of the “sweet spot” sweep suggests 

another practical lesson for real-world 

knowledge workers: a mixed learning 

strategy that is most sensitive to 

information that is neither completely 

novel nor entirely familiar is less 

vulnerable to collapse than either 

extreme.  

5   Conclusion 

The interest dynamics of multiple interacting knowledge workers are complex, often 

counter-intuitive, and yet critical for much collaborative work in the modern world, 

and enjoy the attention of a significant research community. Previous simulation 

studies focus on the evolution of an initial distribution of interests across agents. 

While suggestive, such studies do not account for two critical features of knowledge 

workers in the real world.  

• Their social environment is highly clustered, and they are more likely to interact 

with another agent in their cluster than with an agent in another cluster. 

• Their information environment includes exogenous knowledge sources 

(“documents”) in addition to other agents, and they seek out these documents with 

a query process. 

Our model implements both of these features. The resulting system exhibits a 

metastability that allows us to formulate an operational measure of cognitive collapse. 

A preliminary exploration of the parameter space of social affinity and query 

precision with this measure yields two (very provisional) practical lessons.  

First, query precision has much more influence on collapse than does social 

affinity. To modulate the convergence of a community of analysts, managing the 

amount of noise added to their queries is a more promising method than changing 

their group membership.  

Second, motivating analysts to prefer interests that are neither completely new nor 

completely familiar will lead to more robust convergence without collapse than the 

extremes.  
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