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Abstract. We study the effects of agent movement on equilibrium selection in spatial 
coordination games with Pareto dominant and risk dominant Nash equilibria.  We incorporate 
agent movement, and thereby partner selection, into the strategies of agents in a class of spatial 
coordination games. Our primary interest is in understanding how endogenous partner selection 
on networks influences equilibrium selection in games with multiple equilibria. We use agent 
based models and best response behaviors of agents to study our questions of interest.  In 
general, we find that allowing agents to move greatly increases the probability of selecting the 
Pareto dominant Nash equilibrium in coordination games.  
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1  Introduction 

 
Agent movement has previously been studied in spatial prisoner's dilemma games. In 
this field, researchers are interested in whether the ability of agents to move favors the 
invasion of defecting agents into neighborhoods of cooperators, or whether the ability 
of agents to move allows cooperators to escape defectors. Previous research [1], [2] 
suggests that the ability of agents to move enhances rates of cooperation on average. 
For example, Aktipis [1] studies the behavior of a "walk-away" strategy in a spatial 
prisoner's dilemma game where agents cooperate if a rival cooperated in a previous 
period or move to a new location if the rival defected in the previous period. She finds 
that walk-away is a successful strategy when placed in an Axelrod [3] style 
tournament among commonly studied strategies such as tit-for-tat.  Barr and Tassier 
[2]  study the rates of cooperation and evolution of mixed strategies in a spatial 
prisoner's dilemma game where agents are allowed to move. They find that the 
opportunity to move greatly enhances the probability of agent cooperation across 
many (but not all) network structures.  
 
In this paper we study how the ability of agents to move affects equilibrium selection 
in spatial coordination games with Pareto dominant and risk dominant Nash 
equilibria. Consider the following generic two agent, two strategy simultaneous game: 
 
 
 



        Player 2  

          X       Y 

      Player 1                 X a , a b , c 

                                        Y c , b d , d 

 
Throughout the paper we assume a>c, d>b such that there exist two pure strategy 
Nash Equilibria, X,X and Y,Y. Agents attempt to coordinate with their play partners 
on one of the two Nash equilibria. Thus our game of interest is a standard 2x2 
coordination game. Further, we assume that a>d such that X,X is the Pareto dominant 
Nash equilibrium. Harsanyi and Selton [4] define equilibrium Y,Y to be a risk 
dominant Nash equilibrium if (a-c)(a-c) < (d-b)(d-b) which is equivalent to a+b < 
c+d.  Our primary interest in this paper will be with payoffs assigned such that Y,Y 
qualifies as risk dominant. We study equilibrium selection in these games using an 
agent-based model.  
 
Note that there is a tension between agents attempting to coordinate on the Pareto 
dominant versus the risk dominant Nash equilibrium. All agents would prefer to 
coordinate on X,X because each agent receives a larger payoff than in Y, Y. But, 
should coordination not occur (one agent playing X and the other playing Y) the agent 
attempting to coordinate on X, X is penalized with a low payoff of b.  More 
importantly, as b decreases, playing X becomes more risky and playing Y becomes 
more attractive.  
 
There exists a large literature on the long run selection of equilibria in these games 
without agent movement. As examples, Ellison [5], Kandori,  Mailath, and Rob [6], 
and Young [7], study equilibrium selection in an evolutionary framework where 
agents are randomly matched with game partners. They find that the risk dominant 
Nash equilibrium is the unique stochastically stable equilibrium when agents have a 
small probability of making mistakes in strategy selection. Morris [8] studies the 
spread of a Pareto dominant Nash equilibrium in spatial games where agents play a 
coordination game on various topologies. He finds that a Pareto dominant equilibrium 
may be favored in some network based coordination games if the number of 
neighbors in the network expands at an intermediate rate (quickly, but not too 
quickly.) 
 
In this paper, we explore how endogenous agent movement (which has not been 
previously studied in coordination games) affects the equilibrium selection results 
described above. Specifically, agents are located on a two-dimensional 
lattice.  Agents play a coordination game with each nearest neighbor on the network 
in each period. Agents choose a best response to last period’s play by their neighbors 
as their action in the current period. Using agent based modeling, we study the 
evolution of the agent strategies and the attainment of Pareto vs. risk dominant Nash 
equilibria.  We find that the Pareto dominant Nash equilibrium is much more likely to 
be attained when agents have the ability to move on the network and choose game 
play partners than when agents are not allowed to move.  
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2  Our Model 
 
Each run of our model proceeds as follows. In the initialization procedure, N agents 
are created and assigned a random location on an LxL lattice with fixed boundaries 
(not a torus).1 Note that we set N to be less than LxL so that there are some vacant 
locations. In addition, each agent is assigned a random strategy, X or Y, according to 
a specified probability distribution.  This random initial strategy is played in the first 
period of the model.  
 
Following the initialization procedure, each agent plays the coordination game 
described in the previous section, with each neighbor on the lattice. In each period, 
each agent chooses a single action that must be played with every neighbor. Agents 
choose this action as follows:  The action in period one is assigned by the 
initialization procedure. In each successive period agents choose an action that is a 
best response to their neighbors’ actions in the previous period. Specifically, an agent 
calculates her average payoff for both strategy X and strategy Y against the strategies 
chosen by each of her neighbors in the previous period. Whichever strategy yields a 
larger average payoff is chosen in the current period. Ties are broken by the agent 
playing the strategy that she most recently played.2 
 
Following agent game play, each agent is individually given an opportunity to move 
to a new vacant location on the lattice with probability m. If the agent is given this 
opportunity, a random vacant location is chosen from among the set of vacant 
locations on the lattice with uniform probability. The agent then calculates the best 
response strategy at the new location, X or Y, and the corresponding average payoff 
of that strategy. The agent then compares the average payoff of the best response at 
the new location to the average payoff of the best response at the current location. If 
this average payoff is greater at the new location she moves there. Otherwise she 
remains at her current location. We then repeat this game play procedure until we 
generate equilibrium behavior.3 We repeat the entire process (initialization and game 

                                                        

1 This assumption is made without loss of generality. We also have experimented with a torus 
topology and not found qualitatively different results. 

2 Note that we make the strategy selection using average payoffs because, when movement is 
allowed, two locations may have different numbers of neighbors (due to some locations 
being vacant and also due to edge effects on the lattice.) 

3 Note that because we are using strict best response for strategy selection, some equilibria 
contain period to period switching by agents. As a simple example, if there are two agents 
whose only neighbor is the other it is possible that they never coordinate and continuously 
switch strategies in each period.   For instance one agent may choose X, Y, X, etc… while 
the other chooses Y, X, Y, etc… With strict best response there is no way to break this cycle.   
Because these cycles continue in perpetuity, we consider them to be equilibrium behavior.  



play) for R runs for a specified set of parameters. We take averages over these R runs 
and report results for each parameter set below.   

 
 

3  Results 
 
We report average results below for R=200 runs of each parameter set. We are 
primarily interested in equilibrium selection differences when movement is allowed in 
the model versus when movement is not allowed. Therefore we vary the probability 
of a movement opportunity between m=0 and m=1 across different sets of runs and 
compare the equilibrium selection results.  
 
 
3.1 Variation in Risk 
 
We begin this comparison with the following payoff selections: a=2.0, c=0.0, d=1.0 
so that we have the following normal form game representation: 
 
        Player 2  

          X       Y 

      Player 1                 X 2 , 2 b , 0 

                                        Y 0 , b 1 , 1 

 
We then vary b at intervals between 0 and -6. Note that b<1 implies that Y, Y is a 
Nash equilibrium and b<-1 implies that Y, Y is a risk dominant Nash equilibrium. 
Initially we set N=100 and L=12, so that there are 144 locations: 100 locations with 
agents and 44 vacant locations. For these runs we also set the probability of playing X 
in the first period equal to 50%. Thus, on average, there will be 50% of agents playing 
X in period one and 50% playing Y in period one. 
 
In Table 1 we report the average percent of agents that play strategy X in equilibrium 
when no movement is allowed, m=0, and when movement is allowed for each agent 
in every period, m=1, as a function of the payoff parameter b. 
 
To begin, note the behavior of the model when no movement is allowed. As expected, 
the percent of agents playing the Pareto dominant Nash equilibrium strategy, X, 
decreases as the payoff b decreases.  (As b decreases playing X becomes more risky.)   
Further, recall that when b<-1, Y, Y becomes a risk dominant Nash equilibrium. And, 
we see in the table that for b>-1 a majority of agents play the Pareto dominant Nash 
equilibrium strategy. But, for b<-1, a majority of agents play strategy Y that 
corresponds to the risk dominant Nash equilibrium. This corresponds well with the 
existing literature on equilibrium selection in coordination games reported in the 
introduction. Although our model is different (network based matching versus random 
matching) the risk dominant equilibrium is still favored in our model as predicted.  
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Table 1. Percent of agents that coordinate on the Pareto dominant strategy, X, as a 
function of the payoff b (average over 200 runs of the model.) Other payoffs: a=2.0, 
c=0.0, d=1.0. No movement, m=0 vs. movement, m=1. 12x12 lattice. 
 

Payoff b m=0 m=1 
0 98.6% 100% 

-0.5 82.0% 100% 
-1.0 50.4% 100% 
-1.1 23.5% 98.7% 
-1.5 18.4% 94.2% 
-2.0 6.7% 60.9% 
-2.5 2.1% 42.6% 
-3.0 1.3% 16.0% 
-4.0 0.3% 6.5% 
-4.5 0.2% 4.1% 
-5.0 0.2% 2.7% 
-6.0 0.1% 1.8% 

  
 
More interesting is the comparison of the results when movement is not allowed to 
the results when movement is allowed. As one can see in the table, allowing 
movement greatly increases the probability that the Pareto dominant strategy is played 
in equilibrium. Further it is still possible to generate small numbers of agents who 
play the Pareto dominant strategy in equilibrium even when doing so is very risky, 
when b is very small. 
 
 
3.2  Variation in Population Size 
 
Next we consider how the density of agents on the lattice changes equilibrium 
selection. Here we leave the payoffs for a, c, and d as above and set b=-1.5 (an 
intermediate value for b where we had strong effects for movement.)  Again we set 
the initial strategy distribution equal to 50% for each strategy.   
 
As reported in Table 2, changing the agent density does little to the equilibrium 
selection results when movement is not allowed. However, when movement is 
allowed, a more dense lattice makes it more difficult to coordinate on the Pareto 
dominant Nash equilibrium. This occurs for two reasons: First, when the network is 
very dense, it may be more difficult to find a vacant location near a small pocket of X, 
X coordinating agents. Second, because the network is more dense it is difficult for X, 
X coordination to spread. Each location will have more occupied locations adjacent to 
it. Thus it may be difficult for a small group of agents to “tip” toward the Pareto 
dominant Nash equilibrium. When the network is less densely populated it may be 



easy to find small groups of unconnected agents that can coordinate on the X, X Nash 
equilibrium. Then once these agents coordinate, movement into adjacent vacant cells 
can allow this equilibrium to spread outward. This process is more difficult when the 
lattice is densely populated.  
 
Table 2. Percent of agents that coordinate on the Pareto dominant strategy, X, as a 
function of population size, N (averages over 200 runs of the model). Payoffs:  a=2.0,  
b=-1.5, c=0.0, d=1.0. No movement, m=0 vs. movement, m=1. 12x12 lattice. 

 
Number of Agents m=0                      m=1 

70 22.0% 98.6% 
85 20.5% 98.7% 
100 18.4% 94.2% 
115 18.2% 79.5% 
130 18.0% 62.5% 

 
 
 

3.3  Variation in Initial Strategy 
 
Finally, we vary the initial strategy distribution in the population. Again we leave the 
payoffs unchanged with a=2.0, b=-1.5, c=0.0, and d=1.0.  But, we vary the initial 
percentage of agents playing strategy X in period one from 20% to 70% (with the 
complement playing Y).  We report the results in Table 3. 
 
Table 3: Percent of agents that coordinate on the Pareto dominant strategy, X, as a 
function of the initial percentage of strategy X agents (averages over 200 runs of the 
model.) Payoffs:  a=2.0, b=-1.5, c=0.0, d=1.0. No movement, m=0 vs. movement, 
m=1. 12x12 lattice. 
 

Percent of Initial  Agents 
Playing X 

m=0 m=1 

20% 0.2% 4.3% 
30% 1.0% 21.5% 
40% 4.7% 71.0% 
50% 18.4% 94.2% 
60% 49.2% 100% 
70% 81.0% 100% 

 
There are two items of note in the table. First, the initial distribution of agents has a 
large effect on the equilibrium selected. Moving the initial percentage of agents 
playing X slightly above (below) 50% greatly increases (decreases) the probability of 
agents coordinating on the X, X  Nash equilibrium. Second, movement can act with 
large force to counteract the initial distribution. For instance, when only 40% of 
agents play strategy X in the initial period, only 4.7% of agents play X in equilibrium 
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when movement is not allowed. But, allowing movement increases the equilibrium 
incidence of X to 71%. Even when only 30% of agents play strategy X initially, 
movement can allow a significant percentage of agents to coordinate on the Pareto 
efficient strategy.  In this case 21.5% of agents play X in equilibrium. But to some 
extent this understates the effect of movement. In 26 of these 200 runs, all 100 agents 
coordinate on the Pareto dominant Nash equilibrium. Thus, as stated above, the ability 
to move and select game play partners can have a large effect on the equilibrium 
selected. More importantly this effect moves the population strongly toward selecting 
the Pareto dominant Nash equilibrium more frequently.  
 
 
4  Discussion 
 
The main results of this paper find that movement greatly improves ability of agents 
to coordinate on a Pareto superior equilibrium in coordination games. The results 
should be viewed with three respects in mind: First, the results here directly extend 
the work of others on the effects of movement in Prisoner’s Dilemma games, such as 
Aktipis [1] and Barr and Tassier [2], to other games. Second, the results are an 
extension to the literature on equilibrium selection in coordination games cited in the 
introduction. Movement can greatly increase the ability of agents to avoid the risk 
dominant Nash equilibrium in favor of the Pareto superior Nash equilibrium.  Third 
and most generally, the results of movement in these games should also be viewed as 
an example of endogenous partner selection. Overall, the results reported in this paper 
suggest that, when agents are able to choose game play partners, superior game 
outcomes can be expected. These superior outcomes may be cooperation in a 
Prisoner’s Dilemma or coordination on superior although more risky Nash equilibria.   
 
 
5  Future Work 
 
We are currently working on a variety of extensions to the results reported above. We 
mention a few of them here.  Most prominently we are investigating additional 
models of strategy selection by agents. In the results reported above we only consider 
agents that choose a strategy that is a best response to last period’s play by neighbors. 
There are a number of additional strategy selection models of interest to us. For 
instance agents may respond to more than one period’s past play. This would 
introduce a greater degree of persistence in agents’ strategy choices and may increase 
or decrease the propensity to coordinate on a given equilibrium. There also are many 
alternative behaviors to best response dynamics such as stimulus response behaviors 
or imitative dynamics which may produce interesting equilibrium selection results. In 
addition, investigation of an evolutionary model which selects among a class of 
agents behaviors, such as those described above, would be of interest.  
 
All agents in the model above are homogeneous in terms of risk preference (all agents 
have linear preferences over payoffs) and payoffs. Particularly in the case where 
agents have the ability to move, the introduction of heterogeneous agents would be 



interesting. For instance, would agents with different risk preferences and the ability 
to move be able to better coordinate?  Would these agents sort themselves spatially 
according to preferences?  Similarly, suppose that a small set of agents had a very 
large (small) set of payoffs associated with strategy X, payoff a and b above.  Would 
this preference for strategy X in a small set of agents have a large or a small effect on 
the equilibrium selection results?  Would the effect be seen across the entire 
population of agents or would these agents separate themselves into a small pocket on 
the lattice and have no effect on the other agents? Many question such as these would 
be interesting to explore.  
 
Finally, we report results for a two-dimensional lattice above. While we feel these 
results are of general interest, we also are performing series of runs with other 
topologies and are investigating how variations in the topology of the network change 
the equilibrium selection outcomes.  
 
References 
 
1. Aktipis, C.A. (2004). Know when to walk away: Contingent movement and the evolution 

of cooperation.  Journal of Theoretical Biology, 231 (2), 249-260. 
2. Barr, J. and Tassier, T. (2010). Endogenous neighborhood selection and the attainment of 

cooperation in a spatial prisoner's dilemma game. Computational Economics, 35, 211-234. 
3. Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books. 
4. Harsanyi, J.C. and Selten, R. (1988). A General Theory of Equilibrium Selection in 

Games, Cambridge, MA, MIT Press. 
5. Ellison, G. (1993), Learning, Local Interaction, and Coordination. Econometrica, 61, 

1047-1071. 
6. Kandori, M., Mailath, G. J., and Rob, R. (1993). Learning, mutation, and long run 

equilibria in games. Econometrica, 61, 29-56. 
7. Young, P. (1993). The Evolution of Conventions. Econometrica, 61, 57-84. 
8. Morris, S. (2000). Contagion. The Review of Economics Studies, 67, 57-78. 
 

 


