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Abstract. Modeling information diffusion is an often investigated area
in social network science. Optimizing propagation through targeting in-
teractions is an intriguing subfocus within this area, where the goal is
to identify agents in the network best capable of diffusing information.
Our work addresses a pragmatic context where identifying these agents
is particularly useful: technology adoption. In this work, we model agent
cognitive and social qualities as they are relevant to information com-
munication. We show that a formulation of the social network using
cognitively-rich nodes allows for the identification of agents to whom
targeting for exogenous input provides for more optimal adoption rates.
We then present how the representation falls under the theoretical guar-
antees of performance, as forwarded by Kempe et al. [12].

1 Introduction

The characterization of social relationships has been attracting interest from re-
searchers in the social and behavioral sciences since Georg Simmel’s sociology
work in the twentieth century [17]. Today, social network analysis is exploring
these characteristics in greater depth using computational models that simulate
social interactions among people who are modeled as cognizant agents with com-
plex relationship patterns. While the ability to characterize the nodal variables
of a social network – those variables that describe the regularities and patterns
in relationships between people [21] – is critical, the application of contemporary
psychological research to make the agents cognitively realistic allows for a much
more rich and realistic understanding.

Social network analytics benefit from relying on the framework of graph the-
ory as a computationally and mathematically convenient means to represent
people and their relationships. If we consider the actors (e.g. people or organiza-
tions) as nodes in a graph, edges are one or more specific types of interdependent
connections, such as friendship, kinship, common interest, financial exchange,
communications or information transfer. In addition to this convenient repre-
sentation, the network perspective is more than just a methodological approach,
a convenient vocabulary, or intuitive metaphor for discussing social and behav-
ioral relationships. The network perspective presents a theoretical alternative to
the assumption of independent social actors: an assumption that is prevalent



in much of previous sociological and psychological research. The network per-
spective offers a common framework for testing theories about structured social
relationships and provides a means to precisely characterize important social
concepts with explicit formal definitions.

The diffusion of innovations (i.e. the spread of information, ideas, attitudes,
behaviors, etc., see [16]) within social networks is a phenomenon that has also
been given a great deal of attention from a wide variety of fields: economics [10],
management [1], marketing [22], and computer science [3]. Usually, however these
studies assume relatively simple node characteristics, concentrating more heavily
on the relationships between nodes [13], though the effect of node similarity (i.e.
homophily [14]) has led some to create richer nodal representations (see [18] for
a characterization of nodal complexity representation).

We therefore situate the current research within a perspective that considers
how nodes of the network interact contributes to dynamic aggregate behavior;
however, we also advocate a computational network model that more richly rep-
resents the multifaceted nature of humans and their relationships. One of the
contributions of this work is to demonstrate just such a computational model
that accounts for both the cognitive complexity of individuals who make deci-
sions based on their beliefs (represented as distinct attributes for each of our
network nodes) as well as the social complexities that exists when those beliefs
moderate the nature of the relationships to other individuals (represented as
adjustments to the properties of the edges between our network nodes). Thus,
our work here extends the representative power of a social network to a ’socio-
cognitive network’, in which cognitive properties of nodes are represented to
capture beliefs related to the information that is to be diffused via social in-
teractions. A second contribution of this work is to demonstrate how varying
the node and edge attributes within this network model allows us to examine
how specific network nodes may be targeted by an exogenous entity for optimal
network-wide influence (e.g. a diffused decision or behavior). These targeted
nodes may be chosen based on structural qualities as determined by their social
network (i.e. using centrality metrics), or by considering the cognitive properties
of the nodes (or both) in order to evaluate the optimization of diffused behavior
in a social network.

By representing our interacting agents within a socio-cognitive network, we
use cognitive models of interaction to understand how beliefs and subsequent be-
havioral influences spread through the social network. Specifically, in this work,
we are interested problems of optimality posed by Domingos and Richardson
[4] as well as Kempe et al. [12], who have shown that under certain conditions,
marginal gain may be used to identify nodes that, when influenced, can optimize
influence diffusion. By incorporating a cognitive model of interaction, we hope
to enhance the current level of realism captured in the typical social network
model and allow for the relaxation of constraints involved in independent cas-
cade propagation models. By relaxing the constraints on independent cascade,
we introduce additional complexity into the interaction model while preserving
the analytic result shown in [12].



2 Cognitive Network Model

Our agent model is based on the Beliefs, Intentions, and Desires (BDI) model
used in many multi-agent models. In the case of technology adoption, we con-
sider agent beliefs as the dominant feature in making adoption decisions, based
on empirical work measuring the major qualities involved in making technology
adoption decisions. Previous results show individuals use a set of propositional
qualities of technology in adoption decisions (e.g. attitudes regarding expecta-
tions of performance of the technology or the effort needed to use the technology).
Empirical evidence supports a finite set of propositions involved with technology
adoption decision making; the particular beliefs instantiated within the model
presented herein are based on the work by Venkatesh et al. [20].

We represent the beliefs of agents in the social network as a collection of
propositions Π, whose parameterization and interactions characterize human
information processing resulting from the social diffusion of information (simi-
lar to Carley’s notion of constructuralism [2]). To ground the demonstration in
a relevant domain, the proposition set used in the computational model that
is described in this paper contains all of the propositional qualities used in a
decision-making task related to technology adoption. Also, for the sake of bound-
ing scope, all agents in the network possess the same proposition set (described
below). Propositions π are represented as one-dimensional fuzzy values indicat-
ing the strength an individuals belief in the proposition. The set of propositions
Π represents the complete beliefs of the agent: π ∈ Π where π ∈ {0 . . . 1}. This
quantitative characterization of the strength of the belief overlaps quite well with
existing characterizations of beliefs represented as propositions with a subjective
probability of being correct [6; 9; 7; 19].

We assume a linear relationship between the propositions to yield the decision
function for technology adoption. The adoption decision value for an agent at
time t (δa,t) is then based on the weighted sum of veracity for propositional
beliefs:

δp,t =

{∑
p∈Π wpπp,1 > α 1

otherwise 0
(1)

where α is the decision threshold and is the same for all agents. See figure 1
for a depiction of the belief characterization. The social interactions between
individual agents within the network will affect the belief parameters veracity
(π1). If beliefs are between two agents are similar, only small updates will occur;
if beliefs are

While BDI-based models are popular in network research, still other mod-
els closely parallel the discrete definition of belief modification based on agent
interaction. Social Judgment Theory (SJT) models how agent beliefs change as
a result of interacting with other agents with differing beliefs [11]. Our agent
model is comparable to SJT, where we have replaced discrete ranges of belief
acceptance and denial with continuous functions. In our model, a single value
measures the belief similarity between agents, and that measure weights the
amount of change from interaction.



Fig. 1. Notional illustration of belief characterizations, with depiction of change in
veracity for a proposition (π) during agent interactions. The dashed line indicates the
relative “difficulty” to change veracity as it reaches the extrema points.

2.1 The socio-cognitive network model

To represent the diffusion of adoption we utilize a socio-cognitive network model
that allows for the representation neighbors that interact with agent to affect
the agent’s beliefs. In this network model, any pair of neighboring nodes in the
network interact within their friendship network.

Edges are the cognitive ties (commonly shared beliefs), communication links,
and social relationships between the nodes. Within the current context, cognitive
ties generally refer to the extent of agreement between the individual beliefs of
multiple agents. The strength of the cognitive ties (degree of agreement between
agent beliefs) affect the degree to which agents influence and are influenced by
one another’s beliefs during social interactions. We use this tie-strength concept
to regulate influence propagation in the network model according to Equations
2 and 3 which we discuss next.

The social cognitive influence potential (SCIP) represents the degree to which
one agent can successfully influence another agent (i.e. get them to change their
propositional belief state). For our demonstration model, SCIP is based on the
concept of cognitive homophily [14], and is a computed value representing the
similarity of beliefs between two agents a and b:

Sa,b =

Π∑
p=1

wp(πpa − πpb)2 (2)

The SCIP is then the weighted sum of the differences squared. Where the weight
is uniformly distributed over propositions, SCIP is the mean squared difference
in propositional beliefs. See Figure 2 for a graphical depiction of our simulation
network with the strength of ties indicated by color.

Interaction with others agents in the social network changes an agent’s propo-
sitional belief state; thus, veracity (π) for each proposition is updated. Agent a
beliefs are updated as a result of interaction with agent b if their beliefs differ
sufficiently:

πp,a =

{
Sa,b > 1/3 φ[1 + exp(πp,b − 2πp,a)]−1

otherwise πp,a
(3)



where φ is a scalar constant: φ = 1.03. This update function is derived from
empirical studies conducted by the authors in separate, but related research
efforts not reported here. The update bounds πp,a in the range: {0..1}. Further,
as πp,a reaches the extrema of the function, it becomes increasing difficult to
change the value of πp,a.

Fig. 2. Social network depicting weighted social ties (SCIP values) in Repast. Nodes
represent agents in the social network (100). The fully connected network shown here
depicts the cognitive similarity between nodes. Edge color shows the strength of simi-
larity: red=1, blue=0.

3 Adoption diffusion in socio-cognitive network

Given the socio-cognitive network, we can now ask questions of adoption diffu-
sion over time. Using the Repast framework for agent-based modeling [15], we
conducted several simulation experiments aimed at testing our predictions of
adoption diffusion using different marketing selection heuristics. Within Repast,
we initialize a set of agents, each maintaining a set of propositional beliefs derived
from Venkatesh et al. [20] and simulate agent interactions over time. The Unified
Theory of Acceptance UTAUT holds that there are four key constructs that are
direct determinants of usage intention and behavior: performance expectancy,
effort expectancy, social influence, and facilitating conditions (see table 1). We
measure the total number of adoptions after a discrete time period. The optimal-
ity questions first posed by Domingos and Richardson [4] are the same questions
we want to ask in this context, namely can we identify a set of nodes whose
adoption maximizes the adoption diffusion in the social network?



Proposition Interpretation

Performance expectancy (PE) The degree to which an individual believes that using the
system will help them attain gains in job performance.

Effort expectancy (EE) The degree of ease associated with the use of the system.

Social influence (SI) The degree to which an individual perceives that impor-
tant others believe they should use the new system.

Facilitating conditions (FC) The degree to which an individual believes that an orga-
nizational and technical infrastructure exists to support
use of the system.

Table 1. UTAUT model key constructs [20].

To show that targeting nodes on the basis of both cognitive and struc-
tural properties results in an increase in adoption over targeting nodes based
on random selection, we simulation with one hundred agents over six hundred
timesteps. Each agent is situated within a static ’friendship network’ which de-
termines which nodes each communicates with at every time step. This network
was created as a small-world [23], with a link count of 10 and a rewiring probabil-
ity of 0.1. During the simulation, a selection of nodes are exogenously ’marketed
to’ or targeted, based on three selection criteria: random, degree centrality, or
through a combination of a nodes’ mean SCIP and centrality. The mean SCIP
is the sample mean of a node’s SCIP values with all of its neighbors.

4 Analysis

By comparing overall adoption rates (dependent variable) across our simulated
population (100 agents) in the Repast model, we are able to compare the relative
adoption performance (number of adoptions per simulation) of centrality based
selection heuristics [1] with random selection (see Figure 3). In addition, we
also compare adoption performance between centrality based heuristics and a
combination of cognitive and centrality based heuristics.

We also compare centrality heuristics to heuristics based on a combination of
centrality and cognitive properties of the units. In the latter case, the selection
criteria ranked units by their centrality, then by their mean SCIP value. The
mean SCIP value indicates the degree to which a unit may influence its neighbor
units. Units with highest centrality and mean SCIP were selected. Figure 4 shows
the comparative mean adoption performance between centrality heuristics and
the combined centrality and cognitive selection heuristic for 30 simulations. In
this case, the mean adoptions resulting from the combined heuristic is higher
than the mean adoptions using the centrality heuristic. A t-test between the two
sets of measures shows statistical significance for their difference: p < 0.0002.
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Fig. 3. Mean adoption for random (blue) and centrality (red) heuristics as a function
of selection size. Error bars show the standard error of the mean.

5 Submodularity of the socio-cognitive network

Kempe et al. [12] show that for two models of interaction the problem of selecting
nodes for optimal influence spread is NP complete, but it is possible to guarantee
approximately optimal (i.e. within a constant) influence spread. This bound is
based on a previous result showing that a hill climbing strategy can be used for
optimization with submodular functions [4]. Briefly, a submodular function is a
set function that has a diminishing returns property. In the context of influence
diffusion, in finding the subset of nodes A that have been influenced, for every
A ⊆ Ω and a1, a2 ∈ Ω\A then f(A ∪ {a1}) + f(A ∪ {a2}) ≥ f(A ∪ {a1, a2}) ≥
f(A∪{a1, a2}) +f(A). One interpretation of this is that the marginal gain from
adding a node to a set A is at least as large as the marginal gain from adding
the node to a superset of A.

The Kempe et al. [12] proof strategy is to show that both interaction mod-
els represent submodular functions: independent cascade and linear threshold.
Under the progressive independent cascade interaction model, only agents who
have adopted can attempt to influence agents who haven’t adopted, and agents
once adopted do not change. They may only attempt to influence another agent
once. The progressive case fits our adoption model, where we are interested
in agents’ decisions to adopt a technology rather than a duration of adoption.
Progressive independent cascade interaction is represented as a graph: nodes rep-
resent agents, and edges represent possible interactions. A weight on each edge
represents the probability that the interaction will result in the receiver node’s
adoption. The proof unrolls the interactions by showing that the edge weights
once generated are checked if they are active by sampling a random uniform
distribution. These samples can be generated at once, not requiring a simula-
tion loop. The active node set consists of the nodes having active edge paths
to the sender node set: those nodes initially selected as active (see Figure 5).
The active node set (i.e. the set of adopted nodes) has the property needed for
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Fig. 4. Mean adoption for combined cognitive/centrality heuristic (left) and centrality
alone heuristic (right). Error bars show the standard error of the mean.

submodularity; the probability function of the expected cardinality of the active
node set is a submodular function (see [12]).

We want to show our model of interaction is also submodular, and therefore
has the same approximately optimal guarantees. We decompose this into two
problems. First, we show that the independent cascade model with more than
one interaction between agents is also submodular. Using this result, we show
that interactions involving our cognitive model are also submodular.

Lemma 1. Independent cascade where any agent may influence another with
finite k interactions is a submodular function of interaction.

Proof. In this model of interaction, a sender node has k attempts to influence a
receiver node. Using the same approach as [12] we represent the interaction graph
where nodes represent agents, and there are k edges between nodes, representing
the k possible interactions between two agents. Where adopted or unadopted
nodes can influence other nodes and the interaction probability is the same for
all edges (pe), we can model the likelihood of interaction between pairs of nodes,
each with k interactions and j successful interactions (j = 1) as a set of Bernoulli
trials where:

1− [pje(1− pe)(k−j)] (4)

represents the probability that two nodes will communicate in k attempts (1−
(1−pe)k where p = 0.5). We can reduce the k edges between nodes to a singular
edge whose weight represents the probability that at least one communication
attempt is successful. We sample a random uniform distribution to test each edge
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Fig. 5. Interaction example. Active node A interacts k times with inactive node B (top,
active nodes colored red, inactive nodes colored blue). When an interaction is successful
at t = 2 (noted red), node B becomes active, and any interactions B has with C with
indexes less than or equal to the minimum successful interactions B receives are not
active (noted dashed) (bottom).

as active. The active edge set contains all edges passing the test. Active paths
are paths in the graph connecting nodes through active edges. Here, we have the
same conditions of the active node set for submodularity as shown in [12].

This proof is not sufficient for the case where sender nodes must adopt before
they attempt to convert a receiver node, because sender nodes must adopt before
they attempt to convert another node.

Theorem 1. Independent cascade with finite k interactions between agents is a
submodular function of interaction.

Proof. Again, a node has k attempts to influence a receiver node, and again
we represent the interaction graph where nodes represent agents, and there are
k edges between nodes, representing the k possible interactions between two
agents. We index each edge by its sender and receiver nodes and an index 1..k and
assign a weight to each edge. Each edge weight again represents the probability
that an interaction occurs between sender and receiver nodes. We sample a
random uniform distribution to test each edge as active. The active edge set



contains all edges passing the test. Active paths are paths in the graph connecting
active nodes through active edges, with the added constraint that active edges
into an active node have indexes less than indexes from nodes. Here, we have
the same conditions of the active node set for submodularity as shown in [12].

We can now show that our interaction model is submodular.

Theorem 2. Finite interaction, independent cascade with random interaction
success is submodular.

Proof. In our communication model, at each timestep, each node evaluates
whether it communicates with its neighbors in the network (one of the k edges be-
tween two nodes). Initially, agents are randomly assigned belief values uniformly.
Given the active edge graph generated as in theorem 1, we assign updated beliefs
to each active node as a result of agent interaction (inactive edges do not affect
agent beliefs). Once belief updates are complete, adoption is computed over the
active nodes. The adopting active nodes is the set of active nodes passing the
adoption test and satisfying the temporal constraints of adoption. Adopting ac-
tive nodes are nodes that have adopted as a result of interaction with nodes that
previously adopted and that have an active path. Again, this can be computed
without the need of simulation runs, in one step. The adopted node set is a
subset of the active node set.

6 Discussion

We have constructed a novel socio-cognitive network aimed at testing predictions
of adoption diffusion in social networks. We have shown empirical evidence of the
cognitive aspects of agents impacting adoption diffusion within the social net-
works. We have also extended theoretical results to include more robust models
of interaction. These theoretical results suggest that near optimal selection crite-
ria in these networks exist. Our hypothesis is that the optimal selection criteria
should account for the cognitive aspects of agents situated in social networks to
improve adoption diffusion..

The results of our empirical experiments tie in well with results shown in
earlier work tracing influence [12]. First, random selection heuristics serve as a
functional baseline for performance. Centrality based heuristics perform better
than random, but are not optimal given influence arising from cognitive factors.
In our empirical experiments, a representation of the cognitive state of agents
plays a role, and our results show that even with a modest cognitive represen-
tation, adoption diffusion is affected by cognitive states of connected agents.
In the context of marketing strategies, we can begin to characterize the types
of cognitive agents for the purposes of marketing. The combination an agent’s
cognitive state and their network centrality makes a significant difference in
adoption rates.



7 Future Work and Conclusion

Our results both support and extend the work by Kempe et al. [12]. In accordance
with the authors, we find a theoretical result where adoption has a lower bound
of optimal diffusion, which also holds under the socio-cognitive representation
that we discuss. Secondly, we show that targeting nodes based on socio-cognitive
qualities is a potentially optimal strategy for choosing nodes to be exposed to
exogenous input as compared to selection based on purely structural qualities.

An important quality of our selection criteria that we plan to investigate is
the relative stability of influence spread. A method that is able to achieve near-
optimal diffusion performance with a high degree of confidence could provide
a better outcome. Characterizing the potential trade-off between optimal and
stable results represents an important contribution to studying influence spread
in social networks. A more pragmatic direction for future work ties the work to
marketing strategies. In future studies, we will investigate how to minimize costs
associated with exogenous inputs (e.g. marketing) to maximize adoption diffu-
sion within a networked population. We also are investigating how behavioral
traces derived from open sources (i.e. social media) may be utilized as indicators
of the tie strength between nodes [8].
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