
Dynamically Tracking the Real World in a CSS Model

H. Van Dyke Parunak
1
, S. Hugh Brooks

2
, Sven Brueckner

1
, Ravi Gupta

3

1Jacobs Technology, 3520 Green Court, Suite 250, Ann Arbor, MI 48105

{van.parunak, sven.brueckner}@jacobs.com
2P.O. Box 25275, Washington, DC 20027

shb32@georgetown.edu
3enkidu7, 115 Oronoco Street, Alexandria, Virginia 22314

ravi@enkidu7.com

Abstract. CSS models are most commonly used to articulate theories and ex-

plore their implications. As they become more mature, they are also valuable in

monitoring real-world situations. Such applications require models to be linked

to dynamic real-world data in real time. This paper explores this distinction in a

specific application that tracks crowd violence in an urban setting.

Keywords: forecasting, calibration, apoptosis, stigmergy

1 Introduction

On May 20, 2012, NATO held a summit in Chicago, IL. Protesters planned a demon-

stration. They registered with the authorities for a permit, which specified a route

ending near the secure area where NATO delegates and heads of state would be meet-

ing. The Cook’s County Sheriff’s office invited NEK Advanced Security Group to

demonstrate the usefulness of social media in tracking unrest, and NEK invited

enkidu71 to demonstrate how agent-based modeling could help monitor the demon-

stration in real-time and give near-term forecasts of possible “hot spots” requiring

additional police attention. In response, we constructed and demonstrated a prototype

of CAVE (Crowd Analysis for Violence Estimation).

Crowd simulation is an important and fairly mature area of computational social

science (CSS). We do not offer any theoretical advances over previous research, from

which we borrow liberally. However, we do apply these techniques in a novel way. In

a research setting, CSS models serve to articulate a theory in a precise way, and (cali-

brated with static input data) to test the theory against historical observations. CAVE

must continuously update itself with real-world data to provide an ongoing estimate

of the state of the world a short distance into the future. Our contribution is demon-

strating practical techniques for tracking the real world with a computational model.

Section 2 of this paper distinguishes three applications of CSS: theory articulation,

static prediction, and real-time monitoring and forecasting. Section 3 briefly reviews

1 www.enkidu7.com

http://www.enkidu7.com/

Dynamically Tracking the Real World in a CSS Model 2

the particular CSS model that we adapt, summarizes its structure and operation (speci-

fied more fully in the ODD appendix), and explains how we interface it with the real

world. Section 4 reports the behavior of CAVE during the NATO summit. Section 5

concludes the main body of the paper. Section 6 presents the ODD protocol for

CAVE, which provides further details on its structure and operation.

2 CSS for Theory, Prediction, and Monitoring

CSS models can be applied in several different ways. We distinguish three.

2.1 Theory Articulation

A CSS model provides an unambiguous expression of the interaction of various caus-

al influences within and among actors in a social scenario. It is a detailed embodiment

of claims about factors and interactions that in a previous era could only be outlined

verbally. A number of different formalisms for such models have been demonstrated

[3]. We focus on agent-based models, which represent individuals (or small groups of

individuals) as software agents [14]. Valuable insights concerning social phenomena

can be gleaned from interview protocols (e.g., [15,16]), but the resulting theories are

difficult to test. A computational model is not only more precise than a verbal theory,

but it also allows testing of hypotheses by executing the model. Even without external

data, it can demonstrate testable qualitative trends and emergent behaviors that are not

obvious from a verbal statement. For example, in the study on which CAVE is based

[8], the tendency of groups to form as a function of crowd size is markedly different

with two populations of different sizes than with balanced populations, and the emer-

gence of violence depends on the size of the overall crowd.

2.2 Static Prediction

Qualitative agreement between simulation and observation is good, but accurate quan-

titative predictions (e.g., [1]) are even better, since their results are more directly

comparable with observations from the real world, and they can support decisions that

depend on a quantitative trade-off between cost and benefit. The first benefit is seen

in an implementation that ingests live data at one point in time, then compares model

outputs with subsequent observations. The second is clear in “what-if” exercises, in

which the user runs the model off-line, then examines its results to guide a decision.

2.3 Real-Time Monitoring

Like static prediction models, CAVE seeks to align itself with data from the real

world. However, it runs on-line, not off-line. It continuously ingests observed data

and adjusts its configuration to give the user a continuously updated short-horizon

forecast of the system being modeled.

Dynamically Tracking the Real World in a CSS Model 3

Our approach is motivated by a fundamen-

tal limitation of predicting complex non-linear

systems. The farther one seeks to project the

dynamics of the system, the more random the

projection becomes, resulting in a “prediction

horizon” beyond which such a prediction is no

better than random. We have demonstrated

this horizon in simple agent-based models

[12]. The limitation is fundamental in nature,

not due to noise in the input data or shortcom-

ings in model accuracy [17].

Abstractly, we can view the system as a

vector differential equation,

)(xf
dt

xd

When f is nonlinear, long-range prediction is impossible. However, it is often use-

ful to anticipate the system’s behavior a short distance into the future. A common

technique is to fit a convenient low-order form for f to the system’s trajectory in the

recent past, and then extrapolate this fit into the future (Fig. 1, [9]). Iterating this pro-

cess provides the user with a limited look-ahead into the system’s future. The process

is like walking through the woods on a moonless night. The traveler cannot see the

other side of the forest, but her flashlight can show her the next few meters, and when

she has covered that distance, it can show her the next few meters beyond that.

Realizing the program of Fig. 1 directly requires specifying the state space of the

system explicitly, writing a set of differential equations that characterize it, and fitting

an analytical function to recent observations. Agent-based modeling is attractive for

social systems just because it is difficult to define the com-

plete state space and express the system’s behavior in terms

of analytical functions. Thus it is difficult to use this tech-

nique to produce a fit. This paper shows how to approximate

the strategy of Fig. 1 in an agent-based social simulation.

To motivate our approaches, let’s look in more detail at

local approximations to the system’s state trajectory (Fig. 2).

At time t1, we fit a linear model a. At a subsequent time t2 >

t1, we fit model b. These two models differ in two ways, each

of which leads to errors. We can use observational data to

correct both kinds of error.

1. They differ in direction, which in this case corresponds to

the internal structure and parameters of the model. The di-

rection of the later fit b differs from that of a by θ.

2. They differ in origin. Model a, an approximation, experi-

ences an error δ with respect to the real system.

The simplest use of observational data is simply to restart

the (original) model at the new, observed location, yielding

Fig. 1. Real-Time Monitoring of Com-

plex Trajectories.—a: state space. b:

system trajectory. c: recent observed

system state. d: model update. e: short-

range forecast

Fig. 2. Two adjust-

ments in real-time

monitoring.—

Correcting system

location (δ) and model

fit (θ) at two time

instances t1 < t2.

a

c

b

d

e

a

θ
b

t1

t2

δ

c

Dynamically Tracking the Real World in a CSS Model 4

model c. If the model pa-

rameters are not completely

off the mark, the model still

moves in the same general

direction as the system.

In addition to reinitializ-

ing the model, we can also

retune its parameters. When

analytical approaches are not

applicable, we use synthetic

evolution. Fig. 3 illustrates

the polyagent approach [13],

representing each real-world

entity by a single persistent

avatar and a swarm of

ghosts. The avatar continu-

ously inserts a stream of

simple agents in a faster-

than-real-time model of the

environment, a short distance in the past, and evolves their behavioral parameters

until they correspond to observed behavior, then lets them run into the future to gen-

erate a prediction. The ghosts are apoptotic: they die after a specified period, so the

system does not become clogged with an increasing number of agents.

We have demonstrated this approach in combat modeling [11]. While effective, it

requires detailed observations of each entity being modeled in order to tune the

ghosts’ behaviors. In CAVE, we have aggregate observations of crowd size and com-

position, but not individual observations. So we do not evolve agents’ behavioral

models, and do not maintain the multiple representations of the world at different

epochs required by the polyagent model. The CAVE approach resembles vector c in

Fig. 2. Agent execution provides a short-range look-ahead into the future, while apop-

tosis limits the depth of the look-ahead and allows us to reinitialize agents based on

real-world data, shifting the origin (though not the parameters) of the agents.

3 The CAVE Model

CAVE draws on existing models of crowd psychology, using apoptosis and real-time

data acquisition to adjust the model continuously.

3.1 Underlying CSS Theory

CAVE draws on two areas of research in crowd dynamics.

First, from the extensive literature on crowd psychology [21], we use the extended

social identity model (ESIM) [8,15,16]. Unlike many other models, it is extensively

supported by real-world evidence. While ESIM is not restricted to aggressiveness or

Fig. 3. Polyagent mechanism for dynamically learning

agent behavioral parameters

Ghost time

Avatar

Insertion Horizon

Measure Ghost fitness
Prediction Horizon

Observe Ghost prediction

Ghosts

t
=

(N
o

w
)

Dynamically Tracking the Real World in a CSS Model 5

violence, it has lent itself to several previous agent-based models of these behaviors

[2,8,20] from which we draw inspiration. We adopt two conventions from [8].

1. Agents’ aggressive behavior is driven largely by an internal state variable ([8]’s

“aggression motivation”) that in turn is influenced by events around them. In

CAVE, this variable is called “Disrespect.”

2. Agents are not homogeneous, even within one side of a two-sided conflict, but

differ in their degree of commitment to the cause.

Second, there is increasing anecdotal evidence that agitators in public events use

network technology such as instant messaging and other social media in real-time to

coordinate their activities [19], and that the contents of such media can be analyzed to

track crowd sentiment [4].

An important feature of our work (like that of reference [8], are simple rule-based

entities without an elaborate model of individual cognition.

3.2 Model Structure

Fig. 4 summarizes the overall information flow in CAVE. The following sections

discuss the regions of the Figure, and the ODD protocol (Section 0) gives more detail.

The Environment.

The environment (bottom of Fig. 4) is a square lattice with cells 40 m on a side, repre-

senting downtown Chicago, derived from a GIS map.2 We label each cell to indicate

whether it contains a road, the approved protest route, the security zone within which

the summit activities take place, and an extra-high security exclusion zone. The shad-

ing in Fig. 5 shows the cells corresponding to each of these categories. Agents are

only created on roads. They can move off of roads, but their stigmergic interactions

are limited to roads, and in no case can they enter the Security or Exclusion zones.

Human Agents: Behavioral Loop.

CAVE has two types of agents representing humans: protesters and police. These

agents execute two loops. This section discusses the behavioral loop (at the bottom of

Fig. 4), with a frequency ω of once per simulation step. The next section discusses the

lifetime loop, which implements agent apoptosis.

Protesters are of three subtypes.

 Anarchists aggressively seek to disrupt society, and energize their followers via

social media. They can often be identified visually: they often wear bulky clothing

to conceal hidden weapons, and also sometimes organize “black blocks,” wearing

black clothing and ski masks and moving cohesively to advertise their unified

strength. Black blocks are known for engaging in violence and inciting clashes

with the police.

 Followers accept the anarchist’s agenda, but are not leaders.

2 https://data.cityofchicago.org/browse?tags=shapefiles

https://data.cityofchicago.org/browse?tags=shapefiles

Dynamically Tracking the Real World in a CSS Model 6

 Pacifists are following the protesters out of curiosity more than ideology.

Police are of two types.

 Patrol officers are the usual cadre of an urban police force.

 Riot police have special training in dealing with unruly crowds, as well as special-

ized equipment such as riot shields and heavier padded armor.

The user initializes the total number of protesters and police, and the subtypes are

allocated according to fixed proportions that are model parameters.

At the beginning of a run, the agents are distributed randomly on the roads in the

environment that are outside the Security and Exclusion zones. Each road cell has a

probability of receiving an agent that depends on how far the cell is from the protest

route. The initialization function for protester agents concentrates them on the protest

route, that for anarchists lets them wander farther than pacifists, and that for police

keeps them near the protest route but not blocking traffic by being on it (Section 6.5).

Each agent’s behavior is driven by its level of Disrespect, a variable that is defined

by its drivers and its consequences. An agent’s Disrespect increases with the presence

Fig. 4. Overall Information Flow in CAVE. The text discusses (in order) the environment

(bottom of the figure), the human agent behavioral loop (bottom loop), the human agent life-

time loop (top loop), and real-time information (right side)

Human Agent
Lifetime Loop
(ω ~ 1/100)

Die
Agent removed from

current location

Act
• Move toward own type
• Move toward other type
• Fight

Reset
• Location
• Subtype (if protester)
• Disrespect (average of

peers at new location)

Human Agent
Behavioral Loop

(ω ~ 1)

Human Agent

fD(isrespect)r

Agent dies or

(protester) ends fight

Sense
• Location-

dependent
pheromones

• (protester:) SME

Real-Time Information

SME (from

Twitter)

Environment
Global: Social Media Energy
Local:
•Cell types (static)
•Population gradients
•Fighting start/stop

Agent (Re)Initialization
•Location Handlers
•d(cell, route)

Crowd Location

Reports

Dynamically Tracking the Real World in a CSS Model 7

of fighting in its cell, and (in the case of protesters) the level of Social Media Energy

(SME) attested by tweets from the anarchists. In the bottom loop of Fig. 4, an agent’s

input f(unction) translates the environmental state that it senses into a level of

D(isrespect), which is then translated via a r(ule) into one of three actions. The conse-

quences of increased Disrespect are that the agent first moves toward other agents of

its own type (Protester or Police) for protection, then moves toward agents of the

opposite type (in preparation for confrontation), and then engages in a fight.

Agents execute in random order, without replacement within a given simulation

step. A single step corresponds to one minute of real-world time; the actual elapsed

time is much less, and depends on the speed of the processor.

Agents interact, not directly, but through a shared environment in which they are

localized. The environment is not passive, but executes some processes that support

the agent coordination. This pattern of coordination is called “stigmergy,” a biological

term that recalls the social insects by which the mechanism is inspired [5,10].

Each time it executes, an agent deposits digital pheromones on its cell in the envi-

ronment, indicating its type, its presence, its level of Disrespect, and whether it is

engaged in Fight behavior. Similarly, agents sense a fight in the neighborhood by

monitoring Fight pheromone, and move toward other agents of a specified type by

climbing the gradient of the presence pheromone associated with agents of that type.

The environment supports pheromone-based interaction by evaporating all phero-

mones exponentially, thus removing obsolete information from the system. In AI

terms, it provides basic truth maintenance (maintaining the consistency of a database),

a task that is NP-complete in symbolic representations, with time complexity O(1).

Human Agents: Lifetime Loop.

Apoptotic agents are central to CAVE’s real-time updating. Each agent’s lifetime is

assigned when it is created from a uniform distribution on [50, 150]. When its lifetime

is over, the agent is reinitialized to another location, based on real-time observations

Fig. 5. Coding of the CAVE Environment

Roads Protest Route Security Zone Exclusion Zone

Dynamically Tracking the Real World in a CSS Model 8

of the distribution of protesters and police. The top loop of Fig. 4 summarizes this

life-cycle, whose frequency ω is on the order of 1/100.

Apoptotic agents address two challenges facing an agent model that seeks to be

aligned with the real world.

1. How does the model adjust its internal state to stay aligned with the real world

(Fig. 2)?

2. How do we manage the relation between the simulation’s internal clock (which

depends on processor speed) and the dynamics of the real world?

The reassignment of agents to new locations at the end of their life addresses the

first challenge. Each time CAVE receives an observation of a concentration of pro-

testers or police, it instantiates a special agent (a “location handler”) at the location of

the observation. If the current population of agents at a location is greater than the

location handler desires, it inhibits the assignment of reinitialized agents to that loca-

tion, and apoptosis eventually reduces the population to the observed level. If the

current population is too low, the location handler attracts reinitialized agents to its

location. Thus, with a half-life of 100 minutes (the mean of the lifetime assignment

distribution), population levels in the model adjust to match observed levels.

Apoptosis also mitigates the problem of varying execution speed. The mean agent

lifetime is 100 minutes. Because lifetimes are randomized in [50, 100], agents are

reborn at different times. After a few hundred steps, the average agent has been active

for about 53 steps (Fig. 6), and the strength of the estimated violence reflects a

lookahead about this distance into the future. With a modern computer, a single simu-

lation step takes only a few milliseconds, so the view on the display is looking rough-

ly 53 minutes into the future. Agent apoptosis keeps them from running indefinitely

into the future and formulating an unjustified long-range forecast.

Data Sources.

CAVE is continuously updated with two real-world data sources, shown on the right-

hand side of Fig. 4: an estimate of SME from Twitter feeds (modulating the behavior-

al loop), and estimates of

crowd density from human

observers (modulating the

lifetime loop).

Anarchists use social me-

dia such as Twitter to com-

municate with their follow-

ers. The effectiveness of this

communication mechanism

depends on their Twitter

handles and relevant Twitter

hashtags being known, so

police can monitor their

tweets. CAVE processes this

stream of tweets through a

Fig. 6. Mean agent age = average lookahead

0 200 400 600 800 1000

0

10

20

30

40

50

60

Time Step

M
e

a
n

A
g

e
n

t
A

g
e

Dynamically Tracking the Real World in a CSS Model 9

simple natural language processor that computes the frequency of profanity and other

indications of unrest. The higher the frequency of such traffic, the higher our estimate

of SME.

Observers on the ground enter local observations of crowd density to CAVE via a

web or smartphone interface. Fig. 7 shows the web interface, and Fig. 8 the

smartphone interface. The smartphone’s geolocation capability provides the location

of the observation automatically, allowing police and other observers to update loca-

tion estimates easily from the ground, and its display of violence estimates provides

them with immediate awareness of likely trouble locations.

In the May 20 demonstration, SME estimates were entered by hand, based on

manual monitoring of the Twitter feed. The smartphone interface was not deployed to

observers on the ground, so crowd estimates were entered through the web interface

based on real-time police reports and several streaming video feeds of the event rec-

orded by protestors and journalists among the crowd.

Fig. 7. CAVE interface. The operator enters estimated number of people of each type observed

at a location (a), clicks on the left-hand map to show the location of the observation (b), and

observes regions of high likelihood of violence on the right-hand map (c). In the prototype,

SME is entered through this same interface (d), though the framework supports a direct feed

from a NLP analysis program.

a

b

c

d

Dynamically Tracking the Real World in a CSS Model 10

4 Experience with the

Model

The CAVE prototype shows the fea-

sibility of integrating real-time data

with an agent-based crowd simula-

tion. In the nature of the case, de-

tailed assessment of CAVE’s accura-

cy is not possible, but the Cook

County Sheriff’s Department com-

mented on the contribution of NEK’s

tool suite, “The intelligence we re-

ceived from NEK was relayed to

various law enforcement entities,

such as the FBI, during the NATO

event. The agencies were very appre-

ciative of the information and it

helped to enhance all of the intelli-

gence information” [18].

Though the objective of our model

is to integrate and present real-world

information rather than to study

crowd theory, its emergent behavior

does provide interesting evidence for

the impact of social media. Fig. 9

Fig. 8. Smartphone interface. The smartphone

reports its location automatically.

`

Fig. 9. Dependence of violence on SME

Distribution of Protesters

(red) & Police (blue)
Elevated SME Normal SME

Dynamically Tracking the Real World in a CSS Model 11

shows distribution of the violence estimate for the same distribution of protesters and

police, but in two different conditions. High SME (middle map) leads to numerous

regions of elevated risk of violence, but with low SME (right map), only one location

near the exclusion zone anticipates high violence.

5 Conclusion

Computational Social Science models have reached a level of maturity that allows

them to be used in practical applications. Many such applications, such as crowd

monitoring, require the simulation to be continually updated on the basis of real-time

information from the domain. CAVE demonstrates how a stigmergic agent-based

simulation with apoptotic agents can achieve this objective.

References

1. Bert, F., Podesta, G., Rovere, S., North, M., Menendez, A., Laciana, C.,

Macal, C., Weber, E., Sydelko, P.: Agent-based Modeling of Land Rental

Markets:Comparison between Simulated and Observed Prices in the

Argentina Pampas. the Computational Social Science Society of the

Americas (CSSSA 2011), Santa Fe, NM (2011)

2. Chao, W.M., Li, T.Y.: Simulating Riot for Virtual Crowds with a Social

Communication Model. International Conference on Computer and

Computational Intelligence (ICCCI 2011), vol. LNCS 6922, pages 419–427,

Springer, 2011)

3. Gilbert, N., Troitzsch, K.G.: Simulation for the Social Scientist.

Buckingham, United Kingdom, Open University Press (1999)

4. Gonzalez-Bailon, S., Borge-Holthoefer, J., Rivero, A., Moreno, Y.: The

Dynamics of Protest Recruitment through an Online Network. Scientific

Reports, 1(197) (2011)

5. Grassé, P.-P.: La Reconstruction du nid et les Coordinations Inter-

Individuelles chez Bellicositermes Natalensis et Cubitermes sp. La théorie de

la Stigmergie: Essai d'interprétation du Comportement des Termites

Constructeurs. Insectes Sociaux, 6:41-84 (1959)

6. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J.,

Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen, J.U.,

Jørgensen, C., Mooij, W.M., Müller, B., Pe’er, G., Piou, C., Railsback, S.F.,

Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E.,

Souissi, S., Stillman, R.A., Vabø, R., Visser, U., DeAngelis, D.L.: A

standard protocol for describing individual-based and agent-based models.

Ecological Modelling, 198:115–126 (2006)

7. Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback,

S.F.: The ODD protocol: A review and first update. Ecological Modelling,

221(23):2760–2768 (2010)

Dynamically Tracking the Real World in a CSS Model 12

8. Jager, W., Popping, R., van de Sande, H.: Clustering and Fighting in Two-

party Crowds: Simulating the Approach-avoidance Conflict. Journal of

Artificial Societies and Social Simulation, 4(3) (2001)

9. Kantz, H., Schreiber, T.: Nonlinear Time Series Analysis. Cambridge, UK,

Cambridge University Press (1997)

10. Parunak, H.V.D.: ’Go to the Ant’: Engineering Principles from Natural

Agent Systems. Annals of Operations Research, 75:69-101 (1997)

11. Parunak, H.V.D.: Real-Time Agent Characterization and Prediction.

International Joint Conference on Autonomous Agents and Multi-Agent

Systems (AAMAS'07), Industrial Track, pages 1421-1428, ACM,

Honolulu, Hawaii (2007)

12. Parunak, H.V.D., Belding, T.C., Brueckner, S.A.: Prediction Horizons in

Agent Models. In Weyns, D., Brueckner, S., Demazeau, Y., editors,

Engineering Environment-Mediated Multiagent Systems (Satellite

Conference at ECCS 2007), vol. LNCS 5049, pages 88-102, Springer,

Dresden, Germany (2008)

13. Parunak, H.V.D., Brueckner, S.: Concurrent Modeling of Alternative Worlds

with Polyagents. In Proceedings of the Seventh International Workshop on

Multi-Agent-Based Simulation (MABS06, at AAMAS06), pp. 128-141,

Springer (2006)

14. Parunak, H.V.D., Savit, R., Riolo, R.L.: Agent-Based Modeling vs.

Equation-Based Modeling: A Case Study and Users' Guide. In Gilbert, N.,

Conte, R., Sichman, J.S. (eds.) Multi-Agent Systems and Agent-Based

Simulation, First International Workshop, LNCS, vol. 1534, pp. 10-25.

Springer, Berlin, Germany (1998)

15. Reicher, S.D.: The St. Pauls’ riot: an explanation of the limits of crowd

action in terms of a social identity model. European Journal of Social

Psychology, 14:1-21 (1984)

16. Stott, C., Hutchison, P., Drury, J.: ‘Hooligans’ abroad? Inter-group

dynamics, social identity and participation in collective ‘disorder’ at the

1998 World Cup Finals. British Journal of Social Psychology, 40:359–384

(2001)

17. Strogatz, S.H.: Nonlinear Dynamics and Chaos: with Applications to

Physics, Biology, Chemistry, and Engineering. Reading, MA, Addison-

Wesley (1994)

18. Towne, B.: Letter from Cook County Sheriff's Dept. to NEK. Letter to

Porterfield, T., 23 May (2012).

19. Wasik, B.: #Riot: Self-Organized, Hyper-Networked Revolts—Coming to a

City Near You. (2011). http://www.wired.com/magazine/2011/12/ff_riots/

20. Wijermans, N., Jorna, R., Jager, W., van Vliet, T.: Modelling Crowd

dynamics: Influence factors related to the probability of a riot. In

Proceedings of The Fourth European Social Simulation Association

Conference (ESSA 2007), (2007)

21. Zeitz, K.M., Tan, H.M., J.Zeitz, C.: Crowd Behavior at Mass Gatherings: A

Literature Review. Prehospital and Disaster Medicine, 24(1):32-38 (2009)

http://www.wired.com/magazine/2011/12/ff_riots/

Dynamically Tracking the Real World in a CSS Model 13

6 ODD Protocol for CAVE

The following description of the CAVE model follows the ODD (Overview, Design

concepts, Details) protocol [6,7].

6.1 Purpose

The purpose of CAVE is to provide a real-time window into crowd dynamics that is

continuously updated on the basis of real-world information and can forecast (over a

limited horizon) how the crowd may behave (in terms of its location, density, and

state of agitation). The model was developed to monitor protester dynamics at a pro-

test scheduled along a specific route at the NATO summit in Chicago, IL, May 20,

2012.

6.2 Entities, State Variables, and Scale

CAVE has five types of agents representing humans (“human agents”), a class of

agents that manages synchronization of agent distribution with the real world (“loca-

tion handlers”), and a cellular environment with static geo-spatial information. It

processes two kinds of input from the real world (discussed in Section 6.4 “Sensing”):

a stream of social media generated by protesters, and estimates of crowd location and

size generated by observers

Human Agents.

Human agents are divided into two types, Protesters and Police. Each software agent

represents a small number of humans (10 in the experiments reported here). All

agents have a Disrespect state variable in [0, 10] which determines whether they en-

gage in violence toward the opposite species. Updating of Disrespect is discussed in

 6.3.

Protesters have three subtypes, whose default parameters capture the following in-

tuitions:

 Anarchists are actively trying to make trouble. The initial number is manually

configured. They start with Disrespect of 3 and update every time step.

 Followers will not lead in stimulating unrest, but will engage if a fight breaks out.

 Pacifists are reluctant to enter into violence.

Police have two subtypes, whose default parameters capture the following intui-

tions:

 Riot police have experience, special training, and special equipment for handling

disruptive crowds.

Dynamically Tracking the Real World in a CSS Model 14

 Patrol officers have less extensive training and do not have special equipment.

The user initially specifies the total number of agents of each type (in this case,

30,000 protesters and 12,500 police). Table 1 describes the three types of protester

agents and two types of police agents in terms of their percentage of the population,

their initial level of disrespect D at the start of the run, the maximum distance they

can move in a time step (Section 6.3), and parameters governing their response to a

nearby fight (Section 6.3), initial distribution (Section 6.5) and (in the case of protest-

ers) their response to SME (Section 6.7).

Environment.

The environment is a square lattice with cells 40 m on a side. Cells are labeled as

road or non-road, based on a map of the urban area. They are also labeled as security

area (from which all agents are excluded) and non-security. Road cells have two sub-

types: the designated protest route, and other roads. Agents are located on a continu-

ous scale, and thus may be at different locations within a cell.

A global variable, accessible to all agents, records Social Media Energy (SME), a

measure of protester unrest derived real-time from tweets among protesters.

Location Handlers.

Each time an observer reports a crowd of protesters at a location, CAVE instanti-

ates a location handler at the cell nearest to the location report that is marked as a

road. This handler seeks to align the population of agents at that location with the

reported observation, using the apoptosis of human agents (discussed in Section 6.3).

The impact of a location handler decays as the observation it represents ages, and the

handler dies after a fixed horizon (60 wall-clock minutes in this implementation).

Table 1. CAVE Agent Types and Initial Local Variables

Agent
Type

Num
Agents

Initial
D

Max
Step
(m)

F (6.3) S (6.5)
SME Function Params (6.7)

maxCalm maxIncite alpha zero

Anar-
chists

10% of
protesters

3 15 1.0 5 -0.2 0.8 5.0 0.2

Followers
2x # of
Anar-
chists

1 10 0.7 15 -0.5 0.5 5.0 0.2

Pacifists
Every-one
else

0 5 0.3 50 -0.8 0.2 5.0 0.2

Riot
Police

84% of
Police
size

0 10 1.2 See
Sec-
tion
6.5

Not Applicable

Patrol
Officers

16% of
Police
size

2 15 1.5

Dynamically Tracking the Real World in a CSS Model 15

6.3 Process overview and scheduling

Agents representing humans have two processing loops, a short “behavioral loop” that

executes once each simulation cycle (roughly, once per minute of simulated time),

and a longer “lifetime loop” that governs the agent’s synchronization with the real

world. The agents interact with one another via digital pheromones that they deposit

in the environment, and the environment actively manages these pheromones.

Human Agent Behavioral Loop.

Agents execute in random order without replacement (no agent can execute twice

until all agents have executed once).

An agent carries out the following steps each time it executes.

 If it is on a road cell, it deposits several pheromones reflecting its location and

current state. The pheromone flavors are:

o Position, a unit deposit labeled with agent type

o Disrespect, equal to the agent’s current Disrespect level, labeled

with its type

o Fight, a unit deposit if the agent is in a fight

o FightResolved, a unit deposit if the agent has finished fighting.

 It scans its cell for pheromone levels.

 It updates its level of disrespect, based on

o What it observes in its environment and

o If it is a protestor, the level of SME (per Section 6.7).

 It acts based on its level of disrespect (Table 3)

Table 2 shows the events that change the Disrespect level of each type of agent.

An agent’s action depends on its level of disrespect, as indicated in Table 3:

When an agent decides to move, it senses the level of presence pheromone of the

target agent type (per Table 3) in each cell of its Moore neighborhood. It computes

the vector sum of nine vectors, all originating at its location (which need not be at the

center of a cell). Each vector points toward the center of one cell in the Moore neigh-

Table 2. Events Changing Disrespect

Type of Agent Action That Causes Disrespect Change in Disrespect

Protester or Police Fight takes place next to agent Normalized disrespect pheromone * F
(Table 1)

Protester Social Media Energy Per function discussed in Section 6.7

Police Fight resolved next to agent -4

Table 3. Behavior Triggered by Disrespect Level

Resulting Behavior
Triggering Level of Disrespect

Protester Police

Go towards own type < 5 < 7

Go towards other type > 5 > 7

Fight 8 9

Dynamically Tracking the Real World in a CSS Model 16

borhood, and its length is proportional to the product of the presence pheromone in

that cell, and the distance between the agent’s current location and the center of the

cell. To break symmetries, the agent then adds a randomly oriented vector of length

.25 to the vector sum. Then the agent takes a step in the direction of the final vector. If

the vector is longer than the agent’s maximum step length (from Table 1), the agent

takes a step of maximum length. Otherwise it takes a step of length equal to the vec-

tor.

When an agent decides to fight, the fight lasts for a time uniformly selected be-

tween 5 and 15 cycles. During this time, the agent makes takes no other actions. At

the end of the time, if the agent is a protester, it ends its lifetime (simulating arrest)

and is reborn.

Human Agent Lifetime Loop.

 Agents are apopotic, which means that they live for a fixed period of time (uni-

formly sampled for each agent from the range [50, 150]), then die. When one agent

dies, it is replaced by another one of the same type and resamples its subtype ac-

cording to Table 1, at a location influenced by observers’ reports of crowd popula-

tion, and sets its initial level of disrespect to the average of other agents of its spe-

cies in its new location. If that average is higher than the default for its subtype, the

average is attenuated by 0.9 (for a protester) or 0.8 (for police).

When an agent dies, it is reborn as an agent of the same type and subtype, at the

center of a cell selected in the following way.

 The reborn agent first seeks for location handlers that are requesting an agent of its

type (and in the case of Anarchists, its subtype). If one or more location handlers is

requesting an agent of this subtype, they bid for the agent based on their current

need for agents and the age of the observation that they represent.

 Otherwise the agent is distributed following the initialization protocol (Section

 6.5). If the assigned cell is occupied by a location handler whose reported value is

lower than the current population of the cell, the assignment is rejected and a new

destination cell is computed.

Environmental Dynamics.

At each time step, the environment evaporates all digital pheromones in each cell by

multiplying them by 0.95. Local pheromone concentrations that have fallen below 0.1

are set to 0, reducing the computational effort in maintaining the fields.

6.4 Design concepts

Basic principles.

The model is based on the Elaborated Social Identity Model, inspired by [8]. The

contribution of this paper is not in extending this model in novel ways, but rather in

Dynamically Tracking the Real World in a CSS Model 17

demonstrating how it can be coupled with real-time data to provide short-term fore-

casts of crowd unrest and likely hotspots.

Emergence.

The primary result of interest is the location of hot spots, where the aggregate level of

Disrespect is high and where violence is likely to break out as a result. Such a hotspot

cannot be generated by any single agent, but is the emergent result of many agents

participating locally in the feedback loops shown in Fig. 4.

Adaptation.

Agents adapt in two ways, as shown in the bottom loop of Fig. 4. They modulate their

own level of Disrespect based on the state of their environment, then they select their

next action based on their level of Disrespect.

Objectives.

The agents in CAVE have no individual objectives.

Learning.

CAVE agents have only very primitive learning, consisting of variable increment or

decrement of their level of Disrespect (depending on environmental circumstances),

coupled with a continuous exponential decrease (forgetting) of Disrespect.

Prediction.

CAVE agents do not individually predict the future. They simply respond directly to

environmental stimuli, but because the simulation clock runs faster than real time,

they are living in the near future, so that their collective state represents a prediction.

Sensing.

CAVE agents have access to two kinds of variables: endogenous variables generated

by the agents themselves, and exogenous variables calibrated to information from the

real world.

There are two exogenous variables.

1. The system as a whole maintains the global Social Media Energy (SME) variable

based on social media generated by the protesters and monitored by the CAVE us-

ers.

2. Observers can report the location and size of crowds of protesters and the percent-

age of Anarchists in such a crowd.

Endogenous variables include the density and disrespect of each type of agent

(based on pheromones that they deposit), and the presence of fights, in their cell.

Interaction.

Dynamically Tracking the Real World in a CSS Model 18

All agent interactions are indirect, mediated through the environment (Fig. 4) via

pheromones representing agent presence, fights, and levels of Disrespect.

Stochasticity.

CAVE uses stochasticity in the following decisions:

 Lifetime of each human agent

 Duration of a fight

 Spatial and subtype distribution of agents (initially, and when they are reborn after

apoptosis)

 Agent movement (addition of randomly oriented 0.25 vector to movement vector)

When a new agent is born, its location and subtype is selected stochastically,

weighted by the overall observed distribution of crowd members as reported by ob-

servers.

Collectives.

All agents have species and subtypes as outlined in Section 6.2, but they act individu-

ally. Each agent represents ten humans, but there are no individual representations of

those humans.

Observation.

CAVE delivers its results through a graphical display (Fig. 7) that shows likely

hotspots based on a violence estimation formula. The violence level reported through

the display is linear in the mean Disrespect across Protesters in a cell, ranging from 0

if the mean Disrespect is 0 to 100% if the mean Disrespect is equal to or greater than

the Protesters’ fight threshold (0.8 in this implementation, Table 3).

6.5 Initialization

CAVE is initialized with human agents based on the input number of protesters and

police. The proportion of each subtype of agent is based on Table 1. These agents are

then allocated probabilistically to the cells in the area of interest. Each cell is assigned

a weight of receiving an agent of a given subtype. Then we normalize the weights so

that they total 1 and assign each agent to a cell chosen with probability equal to its

normalized weight. We assign weights using the following protocol.

Cells within the security areas, or not on a road, have weight 0.

For each cell, we compute the Euclidean distance between its center and the center

of the nearest protest route cell, normalized to [0, 1].

The weight that a cell will receive a protester depends on this normalized distance

d and the S parameter for the protester subtype (Table 1), in a way that makes paci-

fists more likely to stay close to the route, and followers and anarchists increasingly

likely to stray from the route. The function is:

Dynamically Tracking the Real World in a CSS Model 19

Fig. 10 illustrates this

function for followers (S =

15).

The distribution function

for police is different, to

capture the intuition that

they should be near but not

on the protest route. We

distinguish two cases, de-

pending on whether the

cell’s normalized distance to

the route is less than or

greater than 0.1:

Fig. 11 plots this function.

6.6 Input data

CAVE is initialized with the static geospatial terrain and estimates of overall Protestor

and Police population size. It continuously draws data from two sources: an estimate

of Social Media Energy from Twitter feeds monitoring known anarchists and hashtags

related to the protests and heavily used by the protestors, and observations of crowd

concentration.

6.7 Submodels

At several points in this

protocol, we transform one

variable into another through

a function of the form

In spite of its superficial

complexity, this function is

simply a way to modulate a

monotone curve from (0, 0)

to (1, 1) from a straight line

Fig. 10. Initial Weight of Follower Assignment

Fig. 11. Initial Weight of Police Assignment

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Normalized Distance to Route

W
e

ig
h

t
o
f

P
ro

te
s
to

r
A

s
s
ig

n
m

e
n
t

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Normalized Distance to Route

W
e
ig

h
t
o
f

P
o
li
ce

A
s
s
ig

n
m

e
n
t

Dynamically Tracking the Real World in a CSS Model 20

(when α is very small, say 0.01) to an increasingly steep convex curve (for high α).

Varieties of this function let us model decreasing instead of increasing functions, and

introduce concave instead of convex deviations from linearity.

In addition to the uses of this form that have already appeared, it is used in the

function that converts SME into a change in a protester’s Disrespect level. The func-

tion has four parameters, which differ across subtypes of protester (Table 1):

 maxCalm is the largest reduction in Disrespect, achieved when SME = 0

 maxIncite is the largest increase in Disrespect, when SME = 1

 zero is the value of SME at which there is no change in Disrespect

 alpha is a shaping parameter, which increases sigmoid shape of the curve.

The function is

Fig. 12 shows the curve for an Anarchist agent.

Fig. 12. Example SME curve for Anarchist

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

Social media energy

C
h
a
n
g
e

in
D

is
tr
u
s
t

	1 Introduction
	2 CSS for Theory, Prediction, and Monitoring
	2.1 Theory Articulation
	2.2 Static Prediction
	2.3 Real-Time Monitoring

	3 The CAVE Model
	3.1 Underlying CSS Theory
	3.2 Model Structure
	The Environment.
	Human Agents: Behavioral Loop.
	Human Agents: Lifetime Loop.
	Data Sources.

	4 Experience with the Model
	5 Conclusion
	References
	6 ODD Protocol for CAVE
	6.1 Purpose
	6.2 Entities, State Variables, and Scale
	Human Agents.
	Environment.
	Location Handlers.

	6.3 Process overview and scheduling
	Human Agent Behavioral Loop.
	Human Agent Lifetime Loop.
	Environmental Dynamics.

	6.4 Design concepts
	Basic principles.
	Emergence.
	Adaptation.
	Objectives.
	Learning.
	Prediction.
	Sensing.
	Interaction.
	Stochasticity.
	Collectives.
	Observation.

	6.5 Initialization
	6.6 Input data
	6.7 Submodels

