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Abstract

Konrad and Skaperdas (2012) develop an analytical model of the provision of security as
a public good. The analysis of this “market for protection” begins with a population of
“bandits” preying on “peasants”. For clarity and tractability, the model makes a number
of simplifying assumptions. An agent-based simulation has been developed to enable the
systematic exploration of the implications of those assumptions. To achieve an initial level
of confidence in the implementation of the analytical model, an analytical result defining an
equilibrium condition is successfully compared with high-level results from the simulation.

The behavior of the simulation is explored in more detail to understand where it differs
from the analytical model. The principal finding from this exploration provides details
on the conditions under which the bandit and peasant populations will reach equilibrium.
The analytical model predicts a single equilibrium where the populations of bandits and
peasants are stable, independent of the number of peasants and bandits. The simulation
finding is that this adjustment process is asymmetric. When bandits start out doing bet-
ter than peasants, the population adjusts to an equilibrium as predicted by the analytical
model. When peasants start out doing better than bandits, the analytically predicted equi-
librium is not reached. This is interpreted as an effect of the movement from a continuous
analysis to a discrete simulation, where the strategy of individual agents has an impact on
the overall behavior of the population.

More generally, this work serves as an example of the combined use of both analytical
models and agent-based simulations in exploring theoretical questions. The goal of the
simulation is to aid understanding of the analytical model, by making more concrete the
conditions under which the model does and does not hold. In turn, analytical techniques
aid the development of the simulation by acting as a double-check on the simulation results,
and by bringing focus to important combinations of parameters.
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Analytical Model

The Market for Protection

Security is a pre-requisite for economic development and activity. Konrad and Skaperdas
(2012) begin their analysis with the interaction of individual agents in anarchy, without
any collective agreement or organization. Peasants spend their effort in productive activity,
and consume some of their output to sustain themselves until the next period. Bandits
produce no output, but prey on peasants, forcing the peasants to surrender their output
for the bandits’ consumption.

A peasant may spend some portion x of her unit effort on securing her output against
bandits, spending the remainder of her effort (1 - x ) on productive work. A protection
function, p(x ), models this security effort; it converts security effort into effective protec-
tion of some proportion of a peasant’s output, leaving the remainder to be surrendered
to a bandit. Given continuous populations and a continuous, non-decreasing protection
function, the analysis then identifies an optimal proportion of the peasant’s overall effort
that should be dedicated to security, and the conditions under which the population of
bandits and peasants will reach an equilibrium, where all actors have the same average
payoff.

The payoff to a peasant from the choice of protection proportion x is as follows:

Up = p(x)(1− x) (1)

Given a total population N consisting of a number of bandits Nb > 0 and a number of
peasants Np, the payoff to a bandit from preying on a peasant is:

Ub = [1− p(x)](1− x)
Np

Nb
(2)

Given a peasant’s optimal choice x∗ of the protection proportion, with optimal util-
ity U∗

p , an equilibrium is reached when the numbers of peasants and bandits adjust until
bandits and peasants have the same payoff U∗

p=U∗
b . Anticipating the simulation imple-

mentation, we can think of agents shifting back and forth between the bandit and peasant
roles until both roles have the same utility. The numbers of bandits and peasants are then
given by:

N∗
p = p(x∗)N

N∗
b = [1− p(x∗)]N

(3)
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Simulation

Model Assumptions and Simulation Overview

In simulating the market for protection (http://www.openabm.org/model/3851/version/2/view)
we modify several of the assumptions of the analytical model. Populations are discrete
rather than continuous. The protection function is given the specific functional form of
a contest success function. Rather than assuming that all peasants use the same optimal
protection proportion, peasants choose a protection proportion from the uniform distribu-
tion. In each period, agents are randomly matched for interaction, either by type (bandits
only interact with peasants), or without regard for type (any agent may interact with any
other).

Equilibrium is a concept from the continuous analysis, defined over a fixed total pop-
ulation, where the numbers of bandits and peasants reach a constant proportion. As im-
plemented in this discrete simulation, equilibrium is defined as a state where the average
payoffs to bandits and to peasants are equal, within a tolerance, and maintained for a con-
figurable number of consecutive periods. A “role-shifting” dynamic is implemented, such
that if the populations are not in equilibrium in a given period, a configurable percentage
of the lower-performing role shifts to the better-performing role in the next period.

The simulation is written in Java, and its behavior is governed by a set of parameters. A
general replication framework has also been written to enable the systematic exploration
of the parameter space, and the replication of earlier results following changes to the
simulation code. At a more granular level, automated unit tests help ensure the correct
behavior of individual classes.

Simulation Details

The analytical model assumes that all peasants spend the same proportion x of their effort
on protection. In our simulation, this is the first assumption that is relaxed; peasants are
randomly allocated a protection proportion in increments of 0.05 over the interval [0,1].

The analytical model places some restrictions on the peasant’s protection function, but
does not give it a functional form. The simulation uses a contest function for the protection
function, to model the interaction of players where the probability for a favorable outcome
increases in the effort of the player. “A Contest Success Function (CSF) provides each
player’s probability of winning as a function of all players’ efforts” (Skaperdas, 1996). In
this case, the contest function is only dependent on the effort of the peasant. We introduce
a parameter γ to model the defensive ability of the peasant. γ varies over the interval [0.5,
1.0], and the resulting protection increases as defensive ability increases.1 2

p(x) =
γx

γx+ (1− γ)(w)
(4)

1In the simulation, p(1) is forced to = 1, and p(0) = 0, to conform to its definition in the model.
2A weight w defaults to 1 in the current model, but will vary in later versions.
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In each period, bandits and peasants are randomly assigned to interact. The normal
interaction pattern is that bandits only interact with peasants. In the any interaction
pattern, any agent may interact with any other. Moving from continuous to discrete
populations, we assume that agents have a discrete number of interactions. In each period,
one bandit may prey on at most one peasant, and one peasant may be preyed upon by
at most one bandit.3 This means a given peasant or bandit may or may not have an
interaction in a given period; if the numbers of bandits and peasants are not the same,
some agents will not have an interaction. If a bandit has no interaction, or interacts with
another bandit, the payoff is 0. If a peasant has no interaction, or interacts with another
peasant, the peasant retains all of its output, for a payoff of 1 - x.

The role-shifting dynamic implements the concept of changing the proportions of ban-
dits and peasants in a fixed population, through imitation. A percentage of the population
whose average payoff is lower at the end of each period, will shift to the opposite role
for the next period. The worst-performing members of a given population role are those
who shift roles. When roles shift, the newly-created agents may be given the appropriate
parameters of the best-performing members of the new role, or the parameters may be
randomly assigned. Once parameters are set for a given agent, they do not change over
time.

The simulation does not currently include mutation of the population strategies. Stochas-
ticity is introduced when populations are initially created, and during the interaction of
agents. One of a set of seeds is used to generate all random numbers needed during execu-
tion of the simulation. This provides a deterministic sequence of pseudo-random numbers,
which enables a given scenario to be repeated with exactly the same results for testing or
replication.

Equilibrium is defined as a state maintained over a configurable number of consecutive
periods (always 10, in these simulations), in which the average payoffs for the bandit and
peasant populations are equal, within some configurable tolerance. In such a state, there is
no shifting of agents from one population to the other, and the size of the overall population
does not change.

The set of parameters of the simulation is the parameter space. This space has K
dimensions, where K is the number of parameters. Parameters have different types, in-
cluding integer, real, and boolean. A single parameter point can be thought of as a vector
in the parameter space, and a single execution of the model with that parameter point is
a scenario. A scenario set is the execution of all the scenarios corresponding to the points
of a given parameter space.

A given scenario terminates under any of several conditions. If either the population of
bandits or peasants drops to 0, it has become extinct, and there is no possibility of future
interaction, so the scenario ends. If the number of bandits or peasants exceed a maximum

3The number of interactions is configurable; the simulation enables multiple bandits to prey upon mul-
tiple bandits, but no results from such configurations are discussed here.
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level (configured to ensure that the simulation does not run out of available memory),
this is taken as evidence that that population will grow indefinitely without limit, and
the scenario ends.4 If the populations of bandits and peasants are in equilibrium for a
configurable number of consecutive periods, the system is interpreted as having reached
equilibrium, and the scenario ends. Otherwise, the scenario ends after a configurable
maximum number of periods has elapsed without any of the above conditions.

Analysis

Interaction of a Single Peasant and Bandit

The goal of the simulation is to replicate the analytical model where possible, and to
generate behavior in areas where the analytical model is less tractable and does not provide
results. The initial goal of the analysis is to verify it implements the expected behavior of
the analytical model. This begins with analyzing the behavior of a single peasant, followed
by the interaction of a single bandit and peasant.

In the analytical model, equilibrium is defined in the aggregate, but in a simulation,
interactions are discrete. A given peasant either is or is not preyed upon in a given period.
When preyed upon, the peasant keeps protected output p(x )(1 - x ) and surrenders un-
protected output [1 - p(x )](1 - x ). Similarly, a bandit preying upon a peasant will receive
the peasant’s unprotected output [1 - p(x )](1 - x ), but if no peasant is available to prey
upon, the bandit’s payoff will be 0. Therefore, depending on the values of the protection
proportion x and the number of peasants and bandits, some of both peasants and bandits
may have much higher payoffs than others. For example, if a peasant has the minimum
protection proportion, x = 0, and is not preyed upon, the payoff is 1 - 0 = 1, the maxi-
mum possible. If a bandit preys upon such a peasant, however, the bandit takes all the
peasant’s output, leaving 0. So a peasant with x = 0 may have either a maximum or a
minimum payoff. In the aggregate, will such a population of peasants persist? We might
expect that this difference in behavior will cause the simulation results to differ from the
analytical predictions; we explore those differences next, in the analysis of the conditions
under which an equilibrium is reached.

Optimal Protection Proportions and Equilibrium

Should we expect that as a group, peasants’ protection proportion approaches the optimal
value x∗? An equilibrium state is one where peasants choose the optimal value x∗, and the
numbers of bandits and peasants have shifted such that both roles realize the same payoff.
Where p(x ) is the contest function, the optimal value x∗ is given by maximizing the payoff

4This condition is only possible with a dynamic where the total population grows. See Appendices 1
and 2 for a discussion of such a dynamic.
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function:

Up =
γx(1− x)

γx+ (1− γ)
(5)

For values of x in the interior of [0,1], and γ in its permissible range of [0.5,1], the denomi-
nator of this equation is always positive.5 Maximizing this objective function gives a single
root in the interval (0,1):

x∗ =
γ − 1 +

√
1− γ

γ
(6)

The second derivative test generates a negative value, confirming that this is a maximum.
Solving this equation for some representative values of γ and substituting into the

various equations for a total population N = 2000, gives:

γ x∗ p(x∗) U∗
p N∗

p N∗
b

0.5 0.41 0.29 0.17 582 1418
0.75 0.33 0.5 0.33 995 1005
0.95 0.18 0.77 0.63 1548 452
1.0 0.0001 1.0 0.99 2000 0
1.0 0 0 0 0 2000

As gamma rises, the protection function becomes more and more effective; the peasant
optimally spends less effort on protection, and utility rises correspondingly. At low pro-
tection levels, in equilibrium bandits substantially outnumber peasants; at high protection
levels, peasants outnumber bandits.6

We would like to simulate this equilibrium behavior by looking at the impact of the role-
shifting dynamic, which implements the concept of shifting the number of agents playing
a given role, based on the average payoff of that role. In performing this validation, we
varied several parameters:

• γ for the contest function ∈ [0.5,1.0], varied in increments of 0.05

• Initial peasant population ∈ {1000, 2000, 3000}
5We discussed the exterior solutions of 0 and 1 above. p(1) fails immediately under the DST dynamic,

discussed in Appendices 1 and 2. p(0) is discussed further in the Findings on equilibrium.
6The last two rows address boundary conditions. As gamma approaches 1, the optimal protection

proportion approaches 0, as the protection function approaches being perfectly effective. The value of
x=0.0001 is not correct, but illustrates that as the protection proportion gets sufficiently small, the optimal
population is all peasants, and their utility approaches 1. On the other hand, by specification from the
analytical model, when x=0, the protection function is forced to be 0. This reverses the results; the optimal
population is all bandits, but since they have no peasants to prey upon, their utility is 0.

6



• Initial bandit population ∈ {1000, 2000, 3000}

• Proportion of the lowest-performing role to shift to the better-performing role ∈ {0.5,
0.1, 0.2}

• New agents adopt the best-performing strategy of the role to which they are shifting

In combination with 10 seeds for pseudo-random numbers, this generated a space of 2970
parameter points. Equilibrium was defined by the maintenance of payoffs within a tolerance
of .01 for 10 consecutive periods. Three regression analyses were done on the resulting
data, confirming at a high level the analytical results above. The protection proportion
was negatively associated with an increase in the γ for the contest function. That is, as the
effectiveness of the security effort increases, the optimal protection proportion decreases.
Secondly, at equilibrium, reached for 50% of the parameter points, the utility for agents
was positively associated with an increase in γ. That is, all agents do better as peasant
protection becomes more effective. Both these effects were highly significant, with P values
of 10−4 or less. Because in the analytical model there is no dependence of the protection
proportion on the numbers of peasants and bandits, a third regression analysis tested
whether the optimal protection proportion was sensitive to initial conditions regarding the
numbers of peasants and bandits. In one third of the cases, there were equal numbers of
peasants and bandits; in one third of the cases, peasants outnumbered bandits; in the last
third of the cases, bandits outnumbered peasants. This test failed to produce a significant
effect, indicating that initial conditions have little impact.

In summary, at this high level of analysis, the simulation results confirm the predictions
of the analytical model. In the Findings section, we will return to these results in more
detail.

Findings

Asymmetric Distribution of Equilibria

The summary analysis from the comparison of optimal protection proportions and equi-
librium confirmed that at a high level, the optimum protection proportion is negatively
correlated (r = -.75) with the value of γ for the contest function. A detailed examination
of these results, however, shows that this relationship is not simply linear. This is most
easily seen with a new statistic, which shows that the combination of γ and the initial ratio
of peasants to bandits is important in understanding the simulation’s behavior. After each
period of the simulation, the average payoffs for all bandits and all peasants is compared to
determine in which direction roles will shift. If we look at the ratio of the average peasant
payoffs to average bandit payoffs after the first period, we see an asymmetric distribution
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of equilibria around the payoff ratio value of 1.0 (Figure 1).7
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Figure 1: Protection Proportion as a function of Initial Ratio Peasant Payoffs to Bandit
Payoffs

Initial Payoff Ratios Lead to Two Behavior Patterns

The asymmetric distribution of equilibria is due to two distinct behaviors in the simulation.
Low defensive ability: bandit payoffs are greater than peasant payoffs when γ is

relatively low (peasant/bandit payoff ratio < 1). In Figure 1, this is the mass of points
(42% of the total) to the left of 1.0, with protection proportions about 0.4 to 0.5. Most of
these points show as green, indicating that equilibrium was reached.

Because their protection is minimally effective, peasants begin with lower payoffs than
bandits, and begin shifting to the bandit role. As there are fewer peasants to prey upon
in each period, payoffs drop for bandits; final utilities average 0.23.

Peasant protection proportions average 0.42, which is close to the analytical model opti-
mum of 0.41; both low and high protection proportions lead to lower payoffs, and peasants
with those proportions then shift to the bandit role. The initial ratio of peasants to ban-
dits affects which way payoffs move for peasants. If peasants are equal to or outnumbered

7Note that the x-axis is a log scale. Ratios greater than 10 were forced to 10 (the highest ratio observed
was 33); this affected about 6% of points.
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by bandits, then their payoff rises modestly to the equilibrium level, because the peasants
with lower payoffs shift to the bandit role, leaving the higher-payoff peasants, who raise the
average. But when peasants outnumber bandits, their payoffs will drop over time, perhaps
by as much as 50%. When peasants outnumber bandits, some are not preyed upon, so
they keep all their output as a payoff, causing the average payoff to be higher. Because the
payoff for bandits is even higher, however, some peasants shift to the bandit role in each
period, which steadily lowers the average payoff of the remaining peasants. An example
is shown in Figure 2. The number of bandits grows for the first 12 periods, but bandit
utility drops. In the 13th period, payoffs for bandits and peasants are equal, within the
equilibrium tolerance, and stay close to constant for the next 10 periods, which defines the
equilibrium state.
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Figure 2: Equilibrium reached for initial Bandit Payoffs greater than Peasant Payoffs

Equilibrium is reached almost 90% of the time when initial bandit payoffs exceed initial
peasant payoffs, and fairly quickly – on average, in 24 periods. Bandits outnumber peasants
roughly 3 to 2 in the end state, regardless of the initial ratio of peasants to bandits.

High defensive ability: peasant payoffs are greater than bandit payoffs when γ is
relatively high (peasant/bandit payoff ratio > 1). In Figure 1, this is the mass of points
to the right of 1.0. Protection proportions are much more widely distributed for this mass
(58% of the total). Many of the points show that no equilibrium was reached before the run
limit of 100 periods was reached. In a smaller number of cases, equilibrium was reached or
bandits went extinct.

Because their protection is very effective, peasants begin with higher payoffs than ban-
dits, and bandits begin shifting to the peasant role. The new peasants are given the highest
performing strategy of the existing peasant population. Over time, peasants generally come
to outnumber bandits, at which point, the best-performing strategy becomes a protection
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proportion of x=0. Any peasant with this strategy who is not preyed-upon, will have the
highest possible payoff (1), and subsequent new peasants will adopt this strategy, leading
to more and more peasants with x=0. This has the effect of raising the average payoff for
peasants, often so quickly that bandits cannot keep up. This “race to the top” frequently
continues indefinitely, until the run limit expires, or all bandits convert to peasants and
the bandit population is extinct. Utilities under this case are much higher than in the first
case; bandits average 0.44 and peasants average 0.64. An example is shown in Figure 3.
Payoffs start very close; in period 1, bandits do slightly better than peasants, but due to
stochastic effects, bandit payoffs drop in period 2, and never recover. As bandits shift to
peasants, bandit payoffs fluctuate, but they never do as well as peasants, and eventually
the bandit population goes extinct.
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Figure 3: “Race to the top” ending in Bandit extinction, for initial Bandit Payoffs less
than Peasant Payoffs

Intermediate values of γ, e.g., 0.75, lead to results between the high and low cases,
but with more variability. Equilibrium is often reached, but sometimes bandits go extinct,
particularly if peasants outnumber bandits at the outset.

Impact of Asymmetric Equilibria Distribution on Protection Proportions

The difference between these two classes of simulation outcome can be seen clearly in a
histogram of the modes of the protection proportions chosen:
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Figure 4: Distribution of the Mode values of Protection Proportion

This shows a clear bi-modal distribution. 0 and 0.35 are the two most common protec-
tion proportions. This bi-modal distribution of protection proportions in the simulation
results is not predicted by the analytical model. The implications of this result are reviewed
in the Discussion section.

These results reflect the assignment of the best-performing protection proportion to new
peasants. The simulation was also run where assignment of the protection proportion to
new peasants is random. This had no positive impact on the tendency of the simulation to
reach equilibrium. What we observe then is that the most common protection proportion
in these cases becomes random, reflecting the random assignment.8

Discussion

The asymmetric distribution of equilibria in the simulation results is an effect of the move-
ment from a continuous analysis to a discrete simulation. In the analytical model, the
analysis is done at the group level; the population of peasants is preyed upon by the pop-
ulation of bandits. All peasants are subject to the same level of banditry, and surrender
their unprotected output uniformly. This puts uniform pressure on peasants, leading them
to adopt the single optimum protection proportion.

8Appendix 2 documents the results when a second dynamic is combined with role-shifting. Although
the asymmetry is not as pronounced, it is still present under these conditions, for the same reasons.
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Asymmetrical Equilibrium Distribution under the Role-Shifting Dynamic

The discrete interaction of peasants and bandits in the simulation leads to the asymmetric
equilibria distribution, not predicted by the analytical model. The difference stems from
whether all peasants will be preyed upon or not. When all peasants are not preyed upon,
a strategic component is introduced into the analysis. We can summarize the asymmetric
behavior as if peasants had two strategies, “hope for the best” or “prepare for the worst”.
When bandits equal or outnumber peasants, peasants are better off playing it safe with the
optimum strategy, clustered around 0.35-0.4. This leads to the best payoff when predation
is close to inevitable (“prepare for the worst”). When peasants outnumber peasants, the
aggregate best strategy is not to spend any effort on protection. Some peasants will not
be preyed upon and will have the maximum payoff (“hope for the best”); others will be
unfortunate enough to be preyed upon and will have 0 payoff. This situation is triggered
when initial peasant payoffs are higher than bandit payoffs, which is in turn caused by
more effective peasant defensive abilities (higher γ).

More specifically, when bandits outnumber peasants, a given peasant will encounter a
bandit with probability 1, and will therefore realize a payoff of:

Up = p(x)(1− x) (7)

When peasants outnumber bandits, the expected payoff to a peasant is:

Up = p(x)(1− x)
Nb

Np
+ (1− x)(1− Nb

Np
) (8)

When the average payoff to peasants is higher than the average payoff to bandits, i.e., γ
is sufficiently high, eventually sufficient bandits will shift to the peasant role so that the
second payoff calculation applies. If x=0, this second payoff reduces to:

Up = 1− Nb

Np
(9)

Eventually, there will be sufficiently more peasants than bandits so that the payoff in
(9) is greater than the payoff in (7), so new peasants are better off choosing x=0. This
generates a free rider effect; the original set of peasants does best with x∗, paying a constant
cost for protection, but later peasants can take advantage of the fact that the existing
mass of peasants outperforms and therefore outnumbers bandits, and choose a protection
proportion that minimizes their costs and maximizes their retained output.910

9Peasants don’t actually choose protection proportions; the proportions are assigned, but the impact is
the same.

10This is most clearly seen when new peasants get the best-performing strategy x=0, but the mechanism
is the same when the new peasant gets a random protection proportion. In that case, the final most frequent
protection proportion can’t be predicted.
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Another way to think about this is that the role-shifting dynamic is the mechanism that
drives the peasant population toward the optimal protection proportion x∗, by removing
poor-performing protection proportions from the population. This can only work when
peasants are moving to the bandit role, however. When bandits are moving to the peasant
role there is no selection pressure on the protection proportion of new peasants, so there
will be no convergence to an optimal x∗.

Conclusion

Simulation of the analytical model of the market for protection allows us to see the sig-
nificant impact of moving from an assumption of continuous populations to discrete pop-
ulations. Instead of a single equilibrium, we see a distribution of equilibria that has at
least two modes. As the discrete assumption is more realistic, this suggests that a single
equilibrium will not be seen under real-world conditions.

This study shows the usefulness of working with both analytical models and agent-
based simulations. Analytical models provide simple, clear sets of predictions, which can
first be used to give some assurance of the high-level correctness of the simulation. Then,
the details of the simulation can be used to explore the implications of the assumptions
built into the analytical model.
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Appendices

Appendix 1: Evolutionary Game Theory Analysis

The MFP analytical model defines an equilibrium for a static total population. In this
appendix and Appendix 2 we add a second dynamic to the simulation to enable the numbers
of agents to rise and fall. An evolutionary game theory analysis is then performed, and
compared with the simulation results to verify that the simulation behaves as expected as
the population state changes.

In addition to the role-shifting dynamic, we define a die/survive/thrive dynamic (DST)
for the evolution of populations when the total population is not fixed. All agents live
for a single period. An agent dies without descendants if its payoff falls below the survive
threshold s ∈ [0,1]; at or above this threshold a single descendant is created. If an agent’s
payoff exceeds a higher, thrive threshold s ∈ [0,1], t ≥ s, then it has two descendants.
Descendants inherit the characteristics of their parent. Peasants inherit a protection pro-
portion, and a protection function. For the simulations analyzed here, bandits have only a
single strategy (always prey upon a single available peasant); there is no variation between
generations. Payoffs are not inherited; each agent begins the period with a payoff of 0.

Evolutionary game theory gives us additional tools to analyze the evolution of a set
of populations from a range of initial conditions. If this matches the behavior of the
simulation reasonably closely, we will gain additional confidence in the simulation. In
particular, in this analysis, we will look at the impact of the DST dynamic on the behavior
of the simulation. To simplify the analysis, we hold the role-shifting behavior constant,
by disabling the role-shifting dynamic. Also, although evolutionary game theory can be
applied to either constant or changing overall populations, in this analysis the overall
population is held fixed.

Evolutionary game theory allows us to analyze the evolution of a population over time.
The individual players play pure strategies, and we analyze the change over time in the
proportions of the population playing each pure strategy. To keep the analysis reasonably
tractable, we define three strategies: “B” is a bandit strategy, “H” is a peasant strategy
where the peasant picks a high protection proportion, and “L” is a peasant strategy where
the peasant picks a low protection proportion. To simplify the analysis, we use the “any”
interaction pattern, so we have a single population, where any combination of interaction
among these three strategies is possible.

The DST dynamic is a two-step process. First we calculate the payoff to each agent
from their interaction, and then we calculate the number of descendants that result. Evo-
lutionary game theory is only interested in the second step – the change in the number of
players playing a given strategy from one generation in the next. We pick parameters for
convenience, as follows:

• High protection proportion: 0.7
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• Low protection proportion: 0.1

• γ for contest function: 0.5

This results in the following payoff matrix, expressed as utilities (as the game is symmetric,
payoffs are only listed for the row player):

B L H
B 0 0.81 0.17
L 0.08 0.9 0.9
H 0.12 0.3 0.3

We then set the survive and thrive thresholds as follows:

• Survive threshold: 0.1

• Thrive threshold: 0.4

This generates a new game, where payoffs are interpreted as the number of descendants:

B L H
B 0 2 1
L 0 2 2
H 1 1 1

Peasants with High protection always have one descendant. They can always protect
enough of their output to survive bandit predation, but they spend so much effort doing so,
that they never thrive; even when interacting with another peasant, so much effort is spent
on protection that their entire output does not exceed the thrive threshold. Peasants with
Low protection, on the other hand, are in a “feast or famine” situation: if they interact with
another peasant, they will keep all their output and thrive with two descendants, but when
preyed upon, they have too little protection to survive and will die without descendants.
Bandits have a mixed bag of outcomes: when they prey on a Low peasant they will thrive
with two descendants; when they prey on a High peasant they will only survive, with one
descendant; when they encounter another Bandit, neither has any output, so both die with
zero descendants.

We define a mass of players N where the numbers of players playing the three strategies
B, H and L are mb, mh, and ml. Then the proportion of the population playing a given
strategy i is:

xi =
mi

N
(10)
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The fitness function Fi(x ) for a given strategy i gives the expected payoff to that strategy
given a current population state (set of population proportions) x :

Fi(x) = xbu(i, B) + xhu(i,H) + xlu(i, L) (11)

Then the proportion of the population playing a given strategy at time t + δ is the
following function of the proportions at time t :

xi(t+ δ) =
mi(t) · Fi(x)

mb(t) · Fb(x) +ml(t) · Fl(x) +mh(t) · Fh(x)
·

1
N
1
N

=
xi(t) · Fi(x)

xb(t) · Fb(x) + xl(t) · Fl(x) + xh(t) · Fh(x)

=
xi(t) · Fi(x)

F̄ (x)

≈ xi(t) · (Fi(x) + α)

F̄ (x) + α

(12)

This is the discrete-time replicator dynamic, where α is a constant added to all entries in
the payoff matrix to ensure that all payoffs are positive (and thus the dynamic is defined on
all areas of the simplex), a common and necessary move for those utilizing this dynamic.
This α is interpreted as “background fitness”, the amount of descendants an individual
would be expected to have before the effects of the strategic interaction in question are
taken into account. The payoffs from the game are then the number of additional offspring
gained from the interaction. We note that the discrete time replicator dynamic is not
invariant to such changes, but as the purpose of the game-theoretic analysis here is to
check the general accuracy of the simulation and focus attention on particular parameters
of interest, the important fact is that the locations of the equilibria are unchanged (although
the stability of the equilibria may change)(Rowe et al., 1985).

This assumes distinct time-steps and that the population reproduces all at one time. If
we let the overlap between generations approach infinity, this approaches the continuous-
time replicator dynamic (Weibull, 1997, p. 124-6)11, whose behavior is well-understood.
The continuous time replicator dynamic is invariant to the addition of a constant to all
payoffs, so if we wish we can ignore the background fitness and again use the original
interpretation of the “die-survive-thrive” thresholds. Graphing the replicator dynamics in
Mathematica generates the following simplex diagram.

11Note that a background birth and death rate is assumed.
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Figure 5: Nash Equilibria

Figure 5 shows the movement of various population states from various initial condi-
tions, and shows two Nash equilibria (NE) for xb, xl, xh where no population can do better
by a unilateral deviation in strategy: (0,1,0) and (12 ,12 ,0). In the evolutionary context,
however, we ask whether a Nash equilibrium is also an evolutionary stable state (ESS).
An ESS is a population state x around which there exists a local neighborhood of states
where the average payoff to the state x is higher than the average payoff to any state y
whose proportions are some small mutation ε of x. This captures the notion that small
perturbations in the proportion of strategies, perhaps due to random mutation, will not
result in movement away from the ESS. Any ESS is a NE, but not all NE are ESS. To
determine if (0,1,0) is an ESS, we suppose a state y such that y is an alternative best
response (BR) to x. Then we have:

u((0, 1, 0), (0, 1, 0)) = u((ε, 1− ε, 0), (0, 1, 0))

2 = 2ε+ 2(1− ε)
2 = 2

(13)
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And x is not a better reply to y than y is to itself:

u((0, 1, 0), (ε, 1− ε, 0)) = u((ε, 1− ε, 0), (ε, 1− ε, 0))

0ε+ 2(1− ε) = 0ε2 + 2ε(1− ε) + 0ε(1− ε) + 2(1− ε)2

2(1− ε) = 2(ε− ε2) + 2(1− 2ε+ ε2)

2(1− ε) = 2(1− ε)

(14)

Therefore, y could successfully invade x, and (0,1,0) is not an ESS. Through a similar
analysis, (12 ,12 ,0) is also not an ESS. Looking at the simplex diagram, we can interpret
these findings as follows. The lower left corner corresponds to a population of just Low
peasants. Interacting only with themselves, these peasants always thrive, so they receive
the maximum possible payoff. On the other hand, this population can be invaded by
Bandits. Paradoxically, it turns out that in a state where there are no High peasants, both
Bandits and Low peasants have the same fitness function:

Fb(x) = xbu(B,B) + xhu(B,H) + xlu(B,L)

= xb(0) + (0)(1) + xl(2)

= 2xl

(15)

Fl(x) = xbu(L,B) + xhu(L,H) + xlu(L,L)

= xb(0) + (0)(1) + xl(2)

= 2xl

(16)

This means that any invasion of Bandits into a pure population of Low peasants will, on
average, persist indefinitely. When either a Bandit or a Low peasant encounters a peasant,
the first agent receives 2, but when either a Bandit or a Low peasant encounters a bandit,
the first agent receives 0. More generally, by the same logic, any point on the entire left
edge of the simplex triangle is a rest point (see Figure 6), one where the dynamics of
the system do not drive the population away from its current state. But none of these
represents an ESS, because any change in the proportions of Bandits and Low peasants is
also a rest point.
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Figure 6: Rest Points

How do we interpret the rest of the simplex? The right edge of the triangle represents
mixtures of Bandits and High peasants. Any such mixtures will move towards a population
of just High peasants, because High peasants have one descendant no matter who they
interact with, but Bandits only have one descendant when they interact with High peasants,
and zero descendants if they interact with other Bandits.

In the interior of the simplex, the dynamic near the top of the simplex mirrors that on
the right-hand edge. In these states there are a lot of Bandits, who will frequently interact
with each other, leaving zero descendants. Consequently, the proportion of High peasants
will rise rapidly. Note that the absolute number of High peasants never changes – they
always just survive – but their relative numbers (their proportion of the entire population)
rises, due to the number of Bandits who die.

Interior states imply that there are at least some Low peasants as well, and this even-
tually changes the trajectory of the dynamic. Starting in states near the top, with many
Bandits, the Low peasants don’t fare well, as their odds of encountering a Bandit are high,
and they have zero descendants. However, as the proportion of Bandits in the overall
population drops, the Low peasants start to have an advantage over both Bandits and
High peasants. For example, in the state (13 ,13 ,13), where there are equal numbers of all
three strategies, in any three interactions, Low peasants are likely to encounter two peas-
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ants, resulting in 4 descendants. On average Bandits will encounter another Bandit, a
Low peasant, and a High peasant, for 3 descendants. No matter who the High peasants
encounter, they will have 3 descendants. This general pattern favoring the Low peasants
in the interior means that eventually, the dynamic will move toward the left side (the Low
vertex), as the proportion of Low peasants steadily grows. This also explains the difference
between the open rest points on the upper left edge, and the closed rest points on the
lower left edge. In the upper areas, any mutation that introduces High peasants will lead
to some initial movement toward the High vertex, as Bandits do worse relative to High
peasants. But once the proportion of Low peasants is greater than that of Bandits, in the
lower areas, introduction of High peasants has no lasting impact; the Low peasants have
more descendants than either High peasants or Bandits, and the dynamic drives back to
the rest point.

Simulation Results Compared to the Game Theory Analysis

The simulation was run 17 times with an N of 6400, varying the proportions of Bandits,
Low peasants and High peasants in increments of 400, resulting in 153 parameter points,
which were then graphed using R, resulting in Figure 7.

Figure 7: Simulation Dynamics

Due to limitations in the current logging interface of the simulation, this analysis results
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in a different depiction of the dynamic than the Mathematica output. For each point, the
final population proportion was compared with the initial population proportion, and the
direction of movement derived from this difference. Ideally, the comparison should be done
between periods t+1 and t, rather than between the last and first periods. The underlying
data are consistent with the Mathematica output, however, as can be seen by looking at
the details from the simulation of a representative single parameter point, in Figure 8,
below.

Figure 8: 5600 Bandits, 400 High, 400 Low, 17 periods (log scale)

This parameter point is near the top of the simplex. Between time t = 1 and t =
2, the greatest movement in population proportions is from Bandit toward High peasant,
as many Bandits (roughly 4500 – note that the graph has a log scale) encounter other
Bandits and leave zero descendants. This corresponds to the large movement seen at the
top of the Mathematica output toward the High vertex. Subsequent periods are equivalent
to points lower and to the right of the Mathematica simplex, where the High peasants
are the predominant proportion of the population by period t = 4. However, by period
t = 7, the number of Bandits has dropped sufficiently that the advantage of the Low
peasants becomes felt. After that, the Low peasants grow rapidly, corresponding to the
set of leftward-pointing horizontal arrows in the Mathematical simplex. The arrow in the
simulation graph captures the difference in proportions from time t = 1 to time t = 17 – a
net strong movement from a preponderance of Bandits to an even greater preponderance
of Low peasants.
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Appendix 2: Equilibrium under DST and Role-Shifting Dy-
namics

Having analyzed separately the behavior of the DST dynamic and the role-shifting dynamic,
the two were combined in scenarios defined by the following parameter space:

• γ for the contest function ∈ [0.5,1.0], varied in increments of 0.25

• Initial peasant population: 1000

• Initial bandit population: 1000

• Proportion of the lowest-performing role to shift to the better-performing role: .05

• Survive threshold ∈ {0.1, 0.15, 0.2, 0.24}

• Thrive threshold ∈ {0.25, 0.3, 0.35, 0.4, 0.45, 0.5}

• New agents adopt the best-performing strategy of the role to which they are shifting

In each period, the role-shifting dynamic was invoked first, followed by the DST dynamic.12

Random seeds and equilibrium definitions were the same as in previous scenario sets. This
generated a space of 5040 parameter points.

The regression analyses previously performed on the role-shifting scenario set were
done on these data, with results similar to those from role-shifting alone.13 The protection
proportion was negatively associated with an increase in the γ for the contest function
(Figure 9). The utility for agents was positively associated with an increase in γ.

12The dynamics will produce different results run in the opposite order. This hasn’t been analyzed, but
should lead to similar conclusions.

13The analysis of the ratio of initial numbers of peasants to bandits was not done, as neither initial
population varied; both were set at 1000.
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Figure 9: Protection Proportion as a function of Contest Function Gamma, Both Dynamics

As a general observation, the population states evolved much more quickly under the
effects of both dynamics than under the effect of the role-shifting dynamic alone. Scenario
end states were reached twice as quickly; on average, end states were reached in 27 periods
for the combined dynamics, as opposed to 54 periods for role-shifting alone. Equilibrium
was reached much less often; an equilibrium end state reached for 7% of the parameter
points, as opposed to 50% for role-shifting alone. The percent of equilibria reached when
the initial ratio of peasant to bandit payoffs was less than 1.0 was 100% under the combined
equilibria, as opposed to 75% under role-shifting alone. This difference is likely to be due
to the more rapid evolution toward end states under the combined dynamics.
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Figure 10: Protection Proportion as a function of Initial Ratio Peasant Payoffs to Bandit
Payoffs, Both Dynamics

Figure 10 shows protection proportions and the distribution of end states under both
dynamics (log scale). There is a pattern to the distribution of end states, as follows:

• Peasants go extinct in the first period for 10% of parameter points, when the survive
threshold is relatively high, s = .25, and their defensive ability γ is low. Because the
peasant population has no time to evolve, the initial random distribution of protection
proportions generates a mean protection proportion around 0.5.

• Bandits go extinct for 20% of parameter points. This happens very quickly (less than
10 periods) when γ is high, similar to what is seen under role-shifting alone. Bandits
also sometimes go extinct over many (more than 80) periods when γ is low but the
thrive threshold is high, t > 0.35. Neither population thrives. Bandits do slightly
better, but the numbers in both populations drop gradually. Stochastic effects may
decide which population goes extinct first.

• Peasants grow to maximum for 45% of parameter points, when γ is in a broad middle
range, from 0.575 to 0.825, and the thrive threshold is not low, t > 0.3. The ratio of
initial payoffs for peasants to bandits has less impact on the outcome; the division of
ratios greater than or less than 1.0 is almost even. The number of periods to reach
maximum ranges from 6 to 99 periods, with a mean of 9 periods.
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• Bandits grow to maximum for 9% of parameter points, when γ is in a middle range,
from 0.6 to 0.725, and the thrive threshold is low, t < 0.4. The ratio of initial payoffs
for peasants to bandits is always less than 1.0. Both populations grow steadily, but
bandits do consistently better and reach maximum first.

• Equilibrium is reached for 7% of parameter points, when γ is in a low to middle range,
from 0.525 to 0.75. The ratio of initial payoffs for peasants to bandits is always less
than 1.0. Most of the time, both populations are lower than their initial levels;
bandits average 620 and peasants average 435. Frequently, the number of bandits is
twice the number of peasants. In this pattern, peasants consistently survive, while
bandits thrive, producing two descendants. One descendant encounters a peasant
and thrives; the other fails to find a peasant to prey upon, and dies.

• No end state is reached by the run limit of 100 periods for 9% of the parameter points.
γ is less than 0.725, and the ratio of initial payoffs for peasants to bandits is always
less than 1.0. These cases resemble the equilibrium cases, but often both populations
continue to drop slowly to very low levels; if the run limit were not reached, one or
the other population would go extinct.

Figure 11 shows the distribution of the mode of protection proportions. A similar asym-
metry of equilibrium distributions is present as for role-shifting alone, but slightly less
pronounced. The distribution is still bi-modal, but when two dynamics are present, the
optimal x∗ around 0.4 is the more common value. Less common, but still very frequent is
x = 0.05. Note that x = 0 is uncommon, unlike under role-shifting alone.
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Figure 11: Distribution of the Mode values of Protection Proportion, Both Dynamics
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Looking at individual scenarios, when an end state is reached quickly, there tends to be
a broad range of protection proportions. High proportions are absent or less numerous, as
they will perform worst; 0 will also be less numerous, when bandits outnumber peasants.
When the end state is reached after many periods, and the population of peasants rises
and falls multiple times, the distribution of protection proportions ends in a narrow range
around the optimal x∗. Figure 12 illustrates this for a partial scenario (the final few periods
are not graphed for clarity). At the conclusion of this scenario, 85% of peasants have a
protection proportion of 0.35; the only other protection proportion present is 0.3, for the
remaining 15% of peasants.
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Figure 12: Fluctuation in Peasant population over many periods

Asymmetrical Equilibrium Distribution under both Role-Shifting and DST
Dynamics

The addition of the DST dynamic does not alter the fundamental mechanism that leads
to asymmetrical equilibria, but does modify its impact. A comparison of Figures 11 and
4 shows that the optimal protection proportion for peasants is reached more often under
the combination of both dynamics than under role-shifting alone. A principal reason for
this is that peasants die out if their payoffs do not reach the survive threshold. Peasants
with protection proportions of 1 (or 0, if preyed upon) will always die out. This begins to
narrow the range of protection proportions. If an end state is reached quickly, however,
the range may of protection proportions may stay quite broad.

In a subset of cases, the interaction of the two dynamics may lead to a fluctuation
in the peasant population, as shown in Figure 12. This fluctuation in turn is due to the
relative fluctuation in bandit and peasant payoffs. Although peasant payoffs rise fairly
steadily, bandit payoffs fluctuate regularly, higher and then lower than peasant payoffs.
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Whenever bandit payoffs fall below peasant payoffs, peasants will move via role-shifting
to the bandit role, eliminating less-efficient protection proportions. When the direction of
movement reverses, and bandits move to the peasant role, they adopt the best-performing
strategy. Since bandits outnumber peasants in almost every period, as we have seen this
proportion for the new peasants will be near the optimal x∗. The combination of these
two processes has a very pronounced focusing effect – the range of protection proportions
becomes steadily narrower, around the optimal x∗.14

The combination of the DST dynamic, and cases where populations and payoffs repeat-
edly fluctuate, accounts for the greater proportion of parameter points under the combined
dynamics where the protection proportion approaches the optimal value, than under role-
shifting alone.

14Eventually in this scenario and others like it, peasant protection becomes so optimal that the peasant
population and payoffs grow rapidly past the bandits, to maximum. The last few periods were not depicted
to avoid swamping the detail of the earlier periods.
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Appendix 3: Market for Protection ODD

Overview

Purpose

Konrad and Skaperdas (2012) develop an analytical model of the provision of security
as a public good. The analysis of this “market for protection” begins with a population
of “bandits” preying on “peasants” interacting in “anarchy”. An agent-based simulation
(MFPsim) has been developed to better understand the analytical model (MFP). In par-
ticular, if the analytical model is re-implemented as an agent-based simulation, do the
conclusions of the analytical model still hold? For example, what is the effect of changing
from continuous populations to discrete populations?

A peasant may spend some portion x of her unit effort on securing her output against
bandits, spending the remainder of her effort (1 - x ) on productive work. A protection
function, p(x ), models this security effort; it converts security effort into effective protec-
tion of some proportion of a peasant’s output, leaving the remainder to be surrendered
to a bandit. Given continuous populations and a continuous, non-decreasing protection
function, the MFP analysis then identifies an optimal proportion of the peasant’s overall
effort that should be dedicated to security, and the conditions under which the population
of bandits and peasants will reach an equilibrium, where all actors have the same average
payoff.

MFPsim modifies the MFP model as follows:

• Populations of bandits and peasants are discrete rather than continuous.

• The protection function is given the specific functional form of a contest success
function.

• Peasants are randomly assigned a protection proportion.

In MFPsim, equilibrium is defined as a state where the average payoffs to bandits and
to peasants are equal, within a tolerance, and maintained for a configurable number of
consecutive periods. When the simulation reaches an end-state, the distribution of pro-
tection proportions in the peasant population can be compared to the optimal protection
proportion predicted by the MFP model.

A technical purpose of the simulation is to enable future extensions to the simula-
tion in a straight-forward manner to accommodate the remainder of the analytical model,
where the original condition of anarchy is modified to introduce various forms of collective
organization.

State Variables and Scales

The behavior of individual Peasants varies according to their protection proportions:

28



• protectionProportion: the amount of the peasant’s unit effort devoted to defending
its output, ∈ [0,1]. Once set, the protection proportion stays constant for the lifetime
of the peasant. Note: although the domain is continuous, during creation of the
peasant population, the Protection Model allocates peasant proportions in bins, at
particular values within the domain, to simplify the subsequent analysis.

All other state in MFPsim consists of a set of global parameters, whose values are set
by the Protection Model. These are discussed in the Submodels section.

Process Overview and scheduling

• When a peasant and a bandit interact, the peasant’s payoff is:

Up = p(x)(1− x) (17)

The payoff to a bandit is:
Ub = [1− p(x)](1− x) (18)

That means that the peasant keeps a proportion p(x ) of the productive output 1 -
x, and the remainder of that productive output is surrendered to the bandit. If a
peasant does not have an interaction with a peasant in a given period, the peasant
retains all output 1 - x ; if a bandit does not have an interaction in a given period,
the bandit’s payoff is 0.

• The protection function p(x ) is given the functional form of a contest success function:

p(x) =
γx

γx+ (1− γ)
(19)

The parameter γ (CONTEST FUNCTION GAMMA) is interpreted as the “defensive
ability” of the peasant.

• In each period, the population of bandits and peasants are randomly matched 1:1
for interaction. Payoffs for each agent are calculated, and one or more Dynamics
are invoked, resulting in a new population of bandits and peasants. A new period
commences, with payoffs starting at 0; payoffs do not accumulate. This process
continues until one of the following end states occurs:

– Peasants go extinct: peasant population drops to 0.

– Bandits go extinct: bandit population drops to 0.

– Peasants go to maximum: peasant population exceeds MAXIMUM POPULATION SIZE

– Bandits go to maximum: bandit population exceeds MAXIMUM POPULATION SIZE
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– Equilibrium: peasants and bandits have the same average payoff within a toler-
ance PAYOFF DISCREPANCY TOLERANCE, for consecutive periods EQUI-
LIBRIUM NUMBER PERIODS WITHOUT ADJUSTMENT.

– Run limit exceeded: the number of periods without reaching one of the above
end states reaches RUN LIMIT.

When an end state is reached, the scenario ends.

• There are two dynamics that may be applied to a population, resulting in a new
population for the next period.15

– Die/Survive/Thrive (DST) Dynamic: this dynamic may result in the total pop-
ulation of agents changing in size, and is defined by two thresholds. Agents
whose payoff is not equal to or greater than the “survive” threshold (SUR-
VIVE THRESHOLD) die without descendants. An agent whose payoff is equal
to or exceeds the survive threshold has one descendant, unless the payoff is equal
to or exceeds the “thrive” threshold (THRIVE THRESHOLD), when the agent
has two descendants. A descendant inherits the strategy of its parent; specifi-
cally, a peasant in the new population inherits the protection proportion of its
parent.16

– Role-Shifting Dynamic: this dynamic results in a percentage of the lowest-
performing role shifting to the better-performing role. The total population
of agents does not change. Role performance is defined by the average payoff
for all members of a role in each period. If the difference between the aver-
age payoffs is greater than PAYOFF DISCREPANCY TOLERANCE, then a
percentage ADJUSTMENT FACTOR PERCENTAGE of the lower-performing
agents shift to the other role. When bandits shift to the peasant role, they
are given a protection proportion determined by flag NEW PEASANT GETS
BEST PROTECTION PROPORTION. If true, they get the current period’s
best performing protection proportion; otherwise, they get a randomly allo-
cated protection proportion. Fractional adjustments less than 1 are rounded to
1, but fractions for numbers above 1 are rounded down to the next integer.

15Current implementation: DST dynamic is always invoked; Role-shifting dynamic may then optionally
be invoked. The order is not reversible.

16Current implementation: The DST dynamic is always invoked, but may be effectively disabled by setting
the survive threshold to 0 and the thrive threshold to 1. There is a known defect with this implementation,
where peasants with x = 0 will thrive if not preyed upon.
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Design Concepts

Emergence

The equilibria of the bandit / peasant population, and the most prevalent protection pro-
portions, emerge from the individual interactions of bandits and peasants.

Adaptation

Agents do not adapt their behavior, nor do their strategies mutate. Once assigned, a
peasant and its descendants keep the same protection proportion. Bandits do not have
individual strategies.

Fitness/Objectives

Agents attempt to maximize their payoffs (utilities) in their interactions with other agents.
But this behavior is determined by the combination of assigned protection proportion, and
the matching pattern for interaction; there is no latitude for individual decision at the
moment of interaction.

Prediction

Agents do not predict the consequences of their actions.

Sensing

Agents do not sense their environment. They are not placed on a spacial grid; their
interaction patterns are determined randomly and externally.

Interactions

There are two interaction patterns, determined by flag NORMAL INTERACTION PATTERN.
If true, bandits are always paired with peasants. If false, any agent may be paired with
any other agent. The latter setting is used to create a single population for the purposes
of evolutionary game theory analysis.

The populations are matched randomly in each period, with one agent interacting
with one other agent, until one population is exhausted. The remaining agents have no
interaction in that period, and receive a payoff as defined in the Process Overview.

Stochasticity

A single long integer is used as a seed for a pseudo-random number generator. This is
used first to allocate protection proportions randomly when the population of peasants
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is first built at the beginning of the scenario. In each period, the random number gen-
erator is then used to shuffle one population, whose members are then selected one at
a time to interact with the next member of the other population. When bandits move
to the peasant role under the Role-Shifting Dynamic, and if NEW PEASANT GETS
BEST PROTECTION PROPORTION is false, the random number generator is used to
assign a protection proportion to the new peasant.

Collectives

There is no collective or social organization to either the bandit or peasant populations;
agents interact randomly, and are not affected by the interactions of others.

Observation

Summary statistics are gathered for every scenario, as one record in a file formatted as
comma-separated values. Each record contains the values of each parameter, the parameter
point, which defines a single scenario. The file thus records the results of traversing the
parameter space, as a collection of scenarios, termed a “scenario set”. In addition to the
parameter values, each record includes these summary statistics:

• Scenario number: unique integer for each scenario in the scenario set

• Stop reason code: integer code defining for which of the six reasons the scenario
stopped execution.

• Period: period in which the scenario stopped.

• Numbers of bandits and peasants, before and after replication in the final period of
the scenario.

• Average bandit and peasant payoffs

• Discrepancy between average bandit and peasant payoffs

• Adjustment, if any, between the bandit and peasant roles. Positive integers: bandits
to peasants; negative integers: peasants to bandits; zero: no change.

• Average, median and mode of the peasant protection proportion

• Average, median and mode of the number of peasants a bandit preys upon17

• Number and percentage of peasants with the protection proportion defined by each
bin (total bins defined by PROTECTION PROPORTION NUMBER INTERVALS.

17Current implementation includes support for multiple bandits preying on multiple peasants; default is
one bandit preys upon one peasant.
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A log file is created for each scenario, containing the same statistics as defined in the
summary file, for each period of the scenario.

Details

Initialization

Initialization for each scenario includes the following steps:

• Peasant population built: peasants numbering NUMBER PEASANTS are created,
with protection proportions randomly allocated at the boundaries of the bins num-
bering PROTECTION PROPORTION NUMBER INTERVALS, each bin spanning
an interval of PROTECTION PROPORTION INTERVAL SIZE. Each peasant is
given a contest function; all contest functions for a given scenario share the same γ,
CONTEST FUNCTION GAMMA.

• Bandit population built: bandits numbering NUMBER BANDITS are created.

• An Interaction Pattern is initialized with the bandit and peasant populations, with
mode determined by flag NORMAL INTERACTION PATTERN (see Interactions).

• Statistics are initialized to zeros to collect observation data.

• Dynamics are added to the scenario. A DST dynamic is always added, with thresh-
olds set per SURVIVE THRESHOLD and THRIVE THRESHOLD. A Role-Shifting
dynamic may be added, if ROLE SHIFTING is true.

• A pseudo-random number generator is initialized with the value of RANDOM SEED

• An Equilibrium Seeker is initialized with the above objects. The run limit is set from
RUN LIMIT. The definition of equilibrium is set from EQUILIBRIUM NUMBER PERIODS
WITHOUT ADJUSTMENT and PAYOFF DISCREPANCY TOLERANCE (see Pro-
cess Overview). The period is set to 1.

The Protection Model invokes the Equilibrium Seeker to begin execution.

Input

There are no input data; all execution is controlled by parameters (see Submodels)
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Submodels

The routines of the Protection Model are controlled by the following parameters; details
of their logic are outlined in the prior sections.18

• PROTECTION PROPORTION NUMBER INTERVALS: positive integer number of
bins into which Peasant protection proportions can be allocated

• PROTECTION PROPORTION INTERVAL SIZE: size of each bin for Peasant pro-
tection proportions, ∈ [0,1]. Interval size * number intervals should equal 1.0.

• CONTEST FUNCTION GAMMA: input to the Peasant contest success function
defining the defensive ability of the Peasant, ∈ [0.5,1]. Shared for all peasants in the
population for a given scenario.

• ROLE SHIFTING: determines whether the Role-Shifting dynamic will be invoked,
∈ {true, false}

• SURVIVE THRESHOLD: determines the minimum payoff an agent must achieve in
a period to have a single descendant in the next period, ∈ [0,1]

• THRIVE THRESHOLD: determines the minimum payoff an agent must achieve in
a period to have two descendants in the next period, ∈ [0,1]; greater than or equal
to SURVIVE THRESHOLD

• PAYOFF DISCREPANCY TOLERANCE: defines the maximum difference between
the average payoffs for bandits and peasants for the two populations to be considered
to be in equilibrium in the current period, ∈ (0,1)

• ADJUSTMENT FACTOR PERCENTAGE: percentage of the lower-performing role
that will be shifted to the better-performing role at the conclusion of this period, if
ROLE SHIFTING is true, ∈ (0,1)

• EQUILIBRIUM NUMBER PERIODS WITHOUT ADJUSTMENT: positive integer
number of consecutive periods without adjustment that must elapse for the scenario
to be considered to be in equilibrium.

• NUMBER PEASANTS: positive integer number of peasants that will be created
during initialization

18Current implementation: there are other parameters in the v1.1 implementation that function, but
have not been described in the studies that use the v1.1 code. Left at their defaults, they will not affect
the function of the code. They implement: a transaction cost to bandits for preying on peasants; enable
multiple bandits to prey upon multiple peasants; enable a matching function to determine the probability
that a bandit is successful in preying on a target peasant.
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• NUMBER BANDITS: positive integer number of bandits that will be created during
initialization

• RUN LIMIT: positive integer number of periods that the scenario will execute with-
out reaching equilibrium, before the scenario will stop.

• NORMAL INTERACTION PATTERN: determines whether bandits only interact
with peasants, if true, or whether any agent can interact with any other agent, ∈
{true, false}

• MAXIMUM POPULATION SIZE: positive integer setting the maximum size of the
population of either bandits or peasants after replication; when exceeded, the scenario
will stop after that period.

• NEW PEASANT GETS BEST PROTECTION PROPORTION: positive integer set-
ting the maximum size of the population of either bandits or peasants after replica-
tion; when exceeded, the scenario will stop after that period.

• FORCE PEASANT ALLOCATION TO HIGH LOW: determines whether peasants
will be initialized with one of two protection proportions, if true; ∈ {true, false}. For
use in evolutionary game theory analyses. Defaults to false.

• FORCE PEASANT ALLOCATION LOW INITIAL PEASANTS: non-negative in-
teger number of peasants less than or equal to NUMBER PEASANTS that will be ini-
tialized with protection proportion FORCE PEASANT ALLOCATION LOW PROPORTION,
if FORCE PEASANT ALLOCATION TO HIGH LOW is true.

• FORCE PEASANT ALLOCATION LOW PROPORTION: if FORCE PEASANT
ALLOCATION TO HIGH LOW is true, sets the protection proportion ∈ [0,1] of a
number of peasants equaling FORCE PEASANT ALLOCATION LOW INITIAL PEASANTS.

• FORCE PEASANT ALLOCATION HIGH PROPORTION: if FORCE PEASANT
ALLOCATION TO HIGH LOW is true, sets the protection proportion ∈ [0,1] of a
number of peasants equaling NUMBER PEASANTS - FORCE PEASANT ALLOCATION
LOW INITIAL PEASANTS.

• RANDOM SEED: long integer used as the seed for a pseudo-random number gener-
ator.
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