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Abstract. In this paper, we study the role of social networks in the
framework of durable technology adoption. We hypothesize that indi-
viduals use social networks to develop perceptions of the quality of a
product in the absence of complete information. To determine how a
firm can choose its optimal price in such situations, we create an agent
and firm-based simulation and test various pricing strategies. We find
that pricing strategies that encourage gradual adoption earn the highest
revenues for the monopolist. These strategies let quality information flow
through the network so that agent perceptions of quality rise before they
purchase the good, allowing the firm to charge a higher price to more
individuals.

1 Introduction

In February 2013, Google released early versions of its new wearable computer,
called ”Google Glass”, to some developers and consumers through its Glass
Explorer program[9]. Individuals were required to apply to buy the device, and
a limited number of buyers were chosen to purchase a test version of the product.
Through this strategy, Google was able to sell its new product at a high price
($1,500) to a small number of individuals while generating excitement about the
device’s future release.

With the rise of social networks, strategies like Google’s are much more com-
monplace. Individuals are more connected than ever before, and firms look to
take advantage of built-in social structures in the release of new products. Firms’
use of word-of-mouth to market a product provides a new challenge in economic
models of technology adoption.

In this paper, we examine the adoption of a new durable technology within
the context of a social network. We discuss one important role a social network
plays in the technology adoption decision: the sharing of information. When a
firm introduces a new technology, buyers may not have complete information
about the quality of the product. However, they may construct a perception of
quality using the information from their friends, particularly if these friends have
prior experience with the new product.

Firms therefore have incentives to increase perceptions of their product by
creating high-quality goods and inducing early adoption of connected individ-
uals. We develop a number of pricing strategies and test them in a simulated
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network of agents to determine how a firm may optimally take advantage of
network structure to maximize its profits. We base the agent model on models
of technology adoption in cognitive psychology in order to capture the ways in
which individual beliefs change through interactions.

Technology adoption, social networks, and durable goods are not new con-
cepts to economics. Network theory has had an increasingly important role in
the conceptualization of the market in recent years. Rauch and Watson (2001)
[10] discussed the combined contributions of sociology and economics, provid-
ing potential frameworks for the introduction of network theory into economic
decision making.1

Additionally, the concept of network externalities (that is, when the value of
a technology depends on the number of individuals who have adopted that tech-
nology) has been frequently applied to the adoption of durable goods, notably
in Katz and Shapiro (1986) [7]. However, many network effects exist outside the
realm of network externalities. In this paper, we consider the impact that a social
network may have on expectations about a good when its quality is unknown.

This paper proceeds as follows: first, we consider the problems faced by a
durable goods monopolist and how networks may increase profits; second, we
describe the various components of the simulation; finally, we discuss the results
of the simulation and their implications for firm decision making.

2 The Durable Goods Problem and Information Sharing

As first presented in Coase (1972) [3], durable2 goods monopolists face an in-
teresting problem. The monopolist has incentives to lower the price after selling
the first units of a good, in order to extract surplus from the consumers remain-
ing in the market. However, consumers recognize that the price will fall in later
periods, and will wait to purchase the good. In this manner, some firms may
lose all of their monopoly power, as consumers wait to buy until price equals
marginal cost. Bulow (1982) [2] found that this problem creates incentives for
firms to produce less durable products (that is, lower the quality of their good).

In this paper, we model durable goods in the context of technology adoption
and social networks. When a new technology is first introduced, consumers are
unsure of the actual value of the good. Therefore, they look to their neighbors,
who may or may not have actual experience with the product, to develop ex-
pectations about quality. These cognitive social networks allow the individuals’
expected values to change over time. In this case, an optimizing firm may look
to take advantage of information flow through the network to extract additional
surplus from consumers.

Consider a two-stage game with two consumers. These consumers believe
a product has a single stage value of V H and V L, respectively, where V H >

1 Zuckerman’s (2003) [12] discussion of Rauch and Watson provides an excellent com-
mentary on their work and the future of network theory in economics.

2 A good is ”durable,” in economic terms, if consumers receive value from it for mul-
tiple periods after their initial purchase. [2] [3]
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V L. The profit-maximizing monopolist would like to extract all surplus from
both consumers. In the absence of changing expectations, his ideal strategy, as
discussed by Coase and Bulow, is to set P1 = 2V H and P2 = V L, selling to
consumer 1 in stage 1 and consumer 2 in stage 2. However, the high-valued
consumer recognizes that the price will fall in stage 2, allowing him to have
positive two-stage surplus of V H−V L > 0 if he waits to buy the good. Therefore,
the firm will be unable to charge a higher price in the first stage; its equilibrium
pricing strategy and profits are (P ∗

1 , P
∗
2 ) = (V L, V L) and Π = 2V L.

Now suppose that, after purchasing the good, consumer 1 tells consumer
2 that the product’s actual value is V H , causing consumer 2’s valuation of
the good to change to V H in stage 2. While the monopolist cannot select the
profit-maximizing price schedule of (P1, P2) = (2V H , V H), it can earn higher
profits than the previous case, choosing the equilibrium strategy of (P ∗

1 , P
∗
2 ) =

(V H , V H). In this case, its profits are Π = 2V H > 2V L, so the firm is strictly
better off from this information sharing.

Of course, in reality, information sharing, network structure, and expectations
about future prices are more complex. Consumers may not be able to accurately
predict how future prices will change. Additionally, in a many-staged game with
a large network of consumers, it is much more difficult to determine the firm’s
optimal price schedule. Therefore, to determine profit-maximizing pricing for the
firm, we experiment with generalized pricing strategies in a simulated technology
adoption framework.

3 Simulation Methodology

3.1 Agent Model

On the demand side of the model, 12,000 agents, arranged in one of three network
structures, interact in each stage of 12,000 time steps of the game, sharing their
beliefs about a given product with their neighbors. In each time step, agents
must decide whether or not to purchase this product, a new, durable technology
with a price Pt.

The agent interaction model is derived from Mappus, Briscoe, and Hutto
(2012) [8], in which individual beliefs are the driving force in technology adop-
tion decisions. In order to combine cognitive network modeling with economic
notions of decision making, beliefs become a perceived value of the product to
the individual, when the actual value of the product is unknown. Agents then
make decisions by comparing the perceived value of the good to the actual price
to determine their expected surplus from adoption.

Individual agents interact with their neighbors in the social graph in each
time step. An agent’s neighbors are those with which he shares cognitive ties,
communication links, and social relationships [4]. Neighbors share a single belief,
their perception of ”quality.” Quality encompasses all relevant characteristics of
the product, both objective and subjective. At each time step, agents compare
their perceived quality to the perceived quality of their neighbors through the
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social cognitive influence potential (SCIP), a measure of the differences in the
beliefs of two individuals. If the SCIP between two individuals is sufficiently
large, then the agents will update their beliefs and change their perceived quality.

We translate the individuals’ perceived quality into a measure of the expected
value the product using a weighted sigmoid function:

Vit(qit) =
1

1 + e−wiqit
(1)

where i indexes the individual, t indexes the time period, Vit is the expected
value of the product in each period, qit is the perceived quality of the good, and
wi is a weight, randomly assigned to the individual. The difference between the
perceived valuation of the product and the product’s price in a given stage is
the expected surplus from adoption in that stage.

Agents decide whether or not they should adopt a product based on the
expected surplus they will receive from adoption. However, agents who have
decided to adopt the product must also choose the optimal time to adopt. If
they believe the price will drop significantly in the following stage, then they
may receive higher surplus by waiting to adopt. Therefore, the individuals’ deci-
sions depend on both the expected surplus today, but also the expected surplus
tomorrow.

Agents predict the price in the following stage using information from the
previous time step. At each time step, they estimate how the price will change
based on the difference between the current price and the previous price. The
expected price in the next stage is then P̂t+1 = Pt + (Pt−Pt−1) = 2Pt−Pt−1. If
the agent decides to adopt today, then his expected surplus today is Vit−Pt and
his expected surplus3 tomorrow is Vit. If he decides to adopt tomorrow, then his
expected surplus today is 0 and his expected surplus tomorrow is Vit−2Pt+Pt−1.
Therefore, an agent will decide to adopt the product in stage t, assuming no time
discounting, if and only if (Vit−Pt)+(Vit) > (0)+(Vit− P̂t+1), or, more simply:

2Vit − Pt > Vit − 2Pt + Pt−1 (2)

Following adoption, agents are informed of the actual objective quality of
the good, updating their perceived quality. They continue interacting with other
agents in the network, but these interactions do not change their personal per-
ceptions of quality.

3.2 Firm Model

The supply side of the model consists of a single firm offering a single good for
the price Pt subject to a constant marginal production cost of c. In each stage,
the firm chooses the price of the product according to one of five strategies. It
will follow this strategy for the entire run of the simulation.4:

3 We assume that individuals do not expect their perceptions of quality to change.
4 These pricing strategies were originally developed in Galloway, Mappus, and Briscoe

(2013) [6]
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Table 1: Summary Statistics
Observations Mean Std. Dev. Min Max

Price 375 0.63 0.24 0.07 1.00
Cumulative Adoption 375 11,684.35 692.44 7,385 12,000
Cumulative Revenue 375 7,610.91 2,901.22 861.72 11,998.19

1. Profit Maximization
2. Normalized Maximum
3. Average
4. Maximum
5. Maximum Connectivity

The profit maximization strategy serves as a control by which we can compare
our derived pricing strategies. Here, the firm assumes a linear demand function
of P = a − bQ and then chooses P to maximize its single-stage profits. In this
strategy, the firm does not take into account the impact of its current price on
future profits and sets price equal to P = 1

2 (a + c). We approximate the P -
intercept of the linear demand curve using max(Vit), the maximum valuation of
all individual in the market. Therefore, the price is:

PPM
t =

1

2
(max(Vit) + c) (3)

The remaining four strategies attempt to take into account the way informa-
tion moves through the network. The firm targets key individuals in the network
by ”pricing to” them; that is, it chooses a price that induces those individuals’
adoption. For ”Normalized Maximum”, the firm uses Wit, the perceived value of
the good to individual i, weighted by their (normalized) connectivity, measured
in node degree. ”Normalized Maximum” sets the price equal to the valuation
of the individual with the highest Wit. ”Average” sets the price equal to the
average weighted perceived value.

The normalized maximum strategy targets the individual with the greatest
combination of perceived value and connectivity left in the market. By pricing
in this way, the firm takes advantage of the diffusion of information through the
network while still charging a relatively high price.

”Maximum” and ”Maximum Connectivity” also target specific individuals.
”Maximum” is essentially the firm’s preferred strategy from the durable monop-
olist’s problem; the firm sets the price equal to the maximum valuation of all
individuals remaining in the market at a given time period. Of course, ratio-
nal agents will recognize that prices are trending downward over time, and will
prefer to wait to buy the good at a lower price.

”Maximum Connectivity” ignores the magnitude of an individual’s valuation
of the good and focuses solely on how connected they are to others in the market.
It sets the price equal to the price threshold of the individual with the highest
degree in the network. Unlike the ”maximum” strategy, any upward or downward
trend in prices will be, for the most part, random.
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Table 2: Regression Results
(1) (2) (3) (4)
All Small World Erdős-Rényi Power Law

Average -0.11 0.23 -0.56 -0.23
(0.13) (0.13) (0.10) (0.32)

Maximum 0.36∗∗∗ 0.55∗∗∗ 0.20 0.28
(0.10) (0.12) (0.23) (0.19)

Maximum Connectivity 0.41∗∗∗ 0.51∗∗∗ 0.33 0.37
(0.13) (0.15) (0.30) (0.24)

Normalized Maximum –0.04 0.30 -0.42 -0.19
(0.13) (0.14) (0.33) (0.24)

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Standard errors in parentheses.

To examine the effect of various random network structures on the effective-
ness of our pricing strategies, we run all pricing strategies over three types of
random graphs: small-world[11], Erdős-Rényi[5], and power law[1].

In an Erdős-Rényi random graph, the probability of an edge existing between
any two nodes is some constant p. The resulting model is highly random, with
limited clustering. Unlike the Erdős-Rényi, a small-world model, in which edges
in a regular lattice structure are rearranged with a given probability p, graphs
have high clustering. However, their degree distributions (that is, the distribution
of the number of connections of individual nodes) do not match those of real-
world networks. Degree distributions in real networks tend to follow a power
law5 distribution. We examine all three types of random graphs in our analysis.

4 Results

We run the simulation 10 times for each of the five pricing strategies in the three
network structures. Table 1 contains summary statistics for the final time step
over all simulations. The revenue in a given stage is defined as the number of
buyers in that time step multiplied by price in that stage. Cumulative revenues
are the sum of individual stage profits over the entire simulation, up to the given
time step. Note that we are analyzing firm revenue rather than firm profits (the
product of the number of buyers and the marginal revenue P − c). Differences
in marginal costs, which is randomized in the initial stage of the simulation and
remains constant throughout all time steps, will created differences in profits not
reflected in revenues. However, because cost does not vary systematically with

5 P (k) ∼ k−γ , where P (k) is the fraction of nodes with k connections to other nodes
and γ is a chosen parameter.
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Table 3: Power Law Test
(1) (5) (6) (7)
All Power Law 1 Power Law 5 Power Law 15

Average -0.11 0.03 -0.45∗ -0.06
(0.13) (0.21) (0.19) (0.31)

Maximum 0.36∗∗∗ 0.19 0.24 0.31∗

(0.10) (0.17) (0.21) (0.18)

Maximum Connectivity 0.41∗∗∗ 0.33 0.39∗ 0.38∗

(0.13) (0.21) (0.23) (0.21)

Normalized Maximum –0.04 -0.35 -0.37 -0.13
(0.13) (0.21) (0.23) (0.21)

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
Standard errors in parentheses.

the pricing strategy, using revenues instead of profits is a valid measure of the
success of the various strategies.

To estimate the effects of various pricing strategies on cumulative simulation
revenues, we estimate generate indicator variables for four of the five pricing
strategies: A (”Average”), M (”Maximum”); MC (”Maximum Connectivity”);
and NM , (”Normalized Maximum”). We then estimate equation 4 using ordi-
nary least squares:

log(CRevi) = β0 + β1 ·Aiβ2 ·Mi + β3 ·MCi + β4 ·NMi + ui (4)

where i indexes the run of the simulation, CRevi is the cumulative revenue,
and ui is random error. Note that all other variables affecting cumulative profits
are randomized across pricing strategy conditions; therefore, they are exogenous
in this estimation. The coefficients β1, β2, β3, and β4 represent the percent
difference of the given strategy from the omitted strategy; that is, from the
profit maximization strategy.

Table 2 contains the results of the estimation of equation 4 for total simula-
tion revenue (that is, cumulative revenues in the final stage of the simulation).
We estimate the effects of the various pricing strategies first on cumulative rev-
enues in all simulations (column 1), and then by network type (columns 2, 3,
and 4). The power law used in Table 2 has an edge count of 120,000.

First, we consider the regression over all types of networks. The results in
column (1) indicate that the maximum and maximum connectivity strategies cre-
ate revenues 36% and 41%, respectively, than the profit maximization strategy.
These strategies also dominate both of the strategies based upon the ”normal-
ized” price strategy (average and normalized maximum).

The ”maximum” pricing strategy is the monopolist’s preferred pricing strat-
egy in the Coase durable goods problem; the firm sells to the individual with
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(a) Revenue stream in the short run.

(b) Revenue stream in the long run.

Fig. 1: A comparison of revenue streams across various pricing strategies in the
short-run and in the long-run.
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the highest valuation of the good who has not already purchased the good. This
strategy’s success is a product of the limited foresight of the agents in the model.
Individuals have imperfect information about the future direction and magnitude
of price changes.

The ”maximum connectivity” pricing strategy takes into account only how
information spreads in the network. By choosing a price that specifically tar-
gets the most influential person in the network, the firm ensures that accurate
information about the product’s value spreads through the network.

Figures 1a and 1b illustrate the key differences between the successful strate-
gies and the alternative strategies. Figure 1a shows the stream of revenues in
the first ten timesteps of the simulation. In the average, normalized maximum,
and profit maximization strategies, the firm achieves mass adoption at an early
stage by choosing a low price. While this may achieve higher revenue in the
short-run (notably, the profit maximization strategy has higher profits than the
maximum strategy, on average, in the first 200 or so time steps), it does not
allow for growth. The firm does not take advantage of the changes in consumer
perceptions of the product.

The successful strategies, maximum connectivity and maximum, do not re-
duce their price in order to attract large initial adoption. They rely on word of
mouth to earn high long-run revenues. In the maximum connectivity strategy,
information diffusion is more rapid, and the firm reaches higher revenues faster
than the maximum strategy. If firms discount future revenues in favor of current
revenues6, than the maximum connectivity strategy clearly dominates.

Table 2 also displays the results of the estimation of equation 4 for each of
the three types of random graphs. From columns (2), (3), and (4), it is clear
that the small-world network drives the primary result. In the Erdős-Rényi and
Power Law networks, no strategy is clearly dominant in the results.

To further investigate this result, we rerun the simulation using only power
law random graphs with varying number of edges. Column (1) in table 3 repli-
cates the primary results; columns (5), (6), and (7) assume power law graphs
with 12,000, 60,000, and 180,000 edges, respectively.

When the edge count is small, there is no clear difference between the different
strategies. However, as the edge count grows to 180,000 (that is, as agents become
more connected), the strategies that allow for diffusion of information through
the network once again gain an advantage on the other strategies. Therefore,
the ability of the maximum and maximum connectivity strategies to achieve
higher revenues depends on the degree of connectivity in the network. If an
individual does not have many people with whom to share communicate, quality
information about the product cannot diffuse through the network.

6 Future discount rates are common in game theory analysis; however, we make the
assumption that both the firm and the agent care equally about current and future
income.
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5 Conclusions

Interaction with neighbors helps agents build an impression of a product in the
absence of complete information about its value. Social networks may allow a
durable goods monopolist to retain some of its monopoly power without renting
the good or signing a long-term pricing contract. To test this idea, we designed
a simulation of technology adoption with agent interactions and experimented
with various pricing strategies. We found that strategies that encourage rapid
early adoption do not encourage the sharing of quality information before agent
adoption and, consequently, result in lower revenues for the firm. The strategy
offering the highest revenues for the firm targets highly connected individuals in
the network and uses them to build ”word of mouth” for the product. Future
work will continue to refine the simulation as well as develop more sophisticated
pricing strategies to better achieve the firm’s optimal profits.
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ABMUSITE: Agent Based Model for Understanding Social Information Transfer and Expression 

used in ``The Role of Networks in Durable Goods Technology Adoption“ 

1. Purpose 

The Agent Based Model for Understanding Social Information Transfer and Expression 

(ABMUSITE) is a framework for modeling and simulating interpersonal influence, which uses 

an agent based model to represent individuals (and other entity agents). Attributes of agents 

allow for representation of complex intra- and interpersonal psychological aspects of influence. 

The agents in the model perform realistic information processing and behavioral intention 

formation within the simulations, which are meant to be informed by human-subject 

experimentation (in progress). Memes (consisting of beliefs) are evaluated by agents at the time 

of reception, and are processed (accepted or rejected by degrees) according to the agent's existing 

set of beliefs, along with consideration of other agent attributes. ABMUSITE links together two 

theoretical representations - the Cognitive Network Model (CNM), a framework for 

quantitatively characterizing individuals’ belief systems as a network of interrelated proposition 

nodes, with each node having specified quantitative parameters, and the Socio-Cognitive 

Network Model (SCNM), which is intended to capture the effects of interpersonal 

communication and influence on individuals’ CNMs during person-to-person interactions. In this 

instantiation, the agents interact both with each other and exogenous marketers (also referred to 

as the ‘world’). 

2. Entities, state variables, and scales  

The following entities are used in the model for the simulation described in the accompanying 

paper. The complete model includes more variables that are not described below. 

Variable Name State variables 

Consumers float productBelief (veracity of beliefs related to adopting new 

technology)  

productDefense (defense of beliefs related to the adoption of new 

technology); 

boolean usedEcommerce, marketedTo; 

network (Mason) friendshipNetwork 

Firm float productPrice, productQuality 

  

The simulation fixed transactions to 1 round of interactions with immediate neighbors every 2 

hours. Given the rate of interaction, total individual simulation time was 2.74 years. 

3. Process overview and scheduling 



Questions: Who (i.e., what entity) does what, and in what order? When are state variables 

updated? How is time modeled, as discrete steps or as a continuum over which both continuous 

processes and discrete events can occur? Except for very simple schedules, one should use 

pseudo-code to describe the schedule in every detail, so that the model can be re-implemented 

from this code. Ideally, the pseudo-code corresponds fully to the actual code used in the program 

implementing the ABM. 

There are two types of agents in the simulations: consumers and firms. Consumer agents 

participate in the social network and make purchasing decisions of a product produced by a firm 

agent. In each simulation, there are many consumer agents and one firm agent. At each time step 

(discrete time simulation), consumer agents communicate with their immediate neighbors in the 

social network and make a purchasing decision based on their price threshold for the product. 

The firm agent sets the price of the product at each time step. Once consumer agents make a 

decision to purchase the product, they do not make any more purchasing decisions for the rest of 

the simulation Further, when consumers purchase, their belief in the product becomes the actual 

quality of the product. 

 Consumers are scheduled to interact, update their cognitive state, and make their purchasing 

decision before the firm adjusts the price in each time step. Consumers are scheduled in a 

random order in each time step. After consumers are finished, the firm then updates the product 

price for the next time step. 

 Consumer agents are initialized with randomly uniform a belief regarding their attitude toward 

product adoption (based on Venkatesh et al., 2003), all of which range in value from {–

infinity..infinity} (single floating point precision). The belief is represented by two variables, 

veracity and defense, which are initially randomly uniformly set. The firm agent is initialize with 

a price value of 1.0 and random (uniformly distributed) floating point value of the quality of the 

product. The quality value does not change in the simulation. 

 Veracity indicates an agent's level of acceptance or rejection in the ``degree of truth'' of the 

proposition. Quantitatively, veracity is represented as a value between -infinity and infinity, 

where -infinity indicates the agent believes the proposition is not true at all (proposition is 

completely rejected), and inf indicates complete belief in the truth of the proposition (proposition 

is completely accepted). Defense can be thought of as the degree of resistance to adoption, also 

with a value between {-infinity…infinity} (single floating point precision). 

 Consumers are connected in a social graph (small-world, Erdos-Renyi, or power law). Edges 

represent the cognitive ties (commonly shared beliefs), communication links, and social 

relationships between the nodes. Within the current context, cognitive ties generally refer to the 

extent of agreement between the individual beliefs of multiple agents. The strength of the 

cognitive ties (degree of agreement between agent beliefs) affects the degree to which agents 

influence and are influenced by one another's beliefs during social interactions. We use this tie-

strength concept to regulate influence propagation in the network model according to SCIP 

values between agents, described below. 



The social cognitive influence potential (SCIP) represents the degree to which one agent can 

successfully influence another agent (i.e. get them to change their propositional belief state). For 

our demonstration model, SCIP is based on the concept of cognitive homophily and is a 

computed value representing the similarity of beliefs between two agents. 

Agents have an adoption threshold derived from their belief value, using a sigmoid transfer 

function that maps the belief value domain to the {0..1} range. Friendship networks are created 

as communication networks for the agent using the JUNG graph library. Small-world networks 

(edu.uci.ics.jung.algorithms.generators.random.KleinbergSmallWorldGenerator) use a cluster 

exponent of 0.8. Erdos-Renyi networks 

(edu.uci.ics.jung.algorithms.generators.random.ErdosRenyiGenerator) use a connection 

probability value of 0.025. Power law networks 

(edu.uci.ics.jung.algorithms.EppsteinPowerLawGenerator) use the number of edges as 10 times 

the number of nodes, and 10000 iterations to form the network. 

After every interaction (with other agents and marketers/world), the agents’ beliefs are updated 

according to the veracity and defense of each belief, and the SCIP (S) between the two agents, 

according to the formula below. 

In this simulation, we are primarily concerned with cognitive centrality (or overlap in beliefs 

(Kameda, 2003)), therefore here the SCIP is determined only by the ‘distance’ between the 

beliefs of the interacting agents. 

Figure 1: Process of interactions and belief updates arising from marketers targeting agents in a 

social network where the agents and their interactions are modeled using ABMUSITE 

4. Design concepts 

Basic Principles: The theory that is tested in this model is how product price and social 

interaction network types interact to inform firms on pricing strategies. Our submodels include 

the beliefs at the agent level, or the Cognitive Network Model (CNM), a framework for 

quantitatively characterizing individuals’ belief systems as a network of interrelated proposition 

nodes, with each node having specified quantitative parameters. This takes into the account the 

notion of belief networks (Venketesh et al., 2003) relevant toward technology adoption.  At the 

group level, Socio-Cognitive Network Model (SCNM), is built on the notion of cognitive 

centrality (Kameda), intended to capture the effects of interpersonal communication and 

influence on individuals’ Belief Networks (BNs) during person-to-person interactions. 

Emergence. The agents are expected to change their beliefs in accordance with the beliefs of the 

involving beliefs of their social network. Structural properties often result in emergent factions 

linked by ties of varying strength. 

Adaptation. The agents adapt their beliefs in accordance with those that they encounter within 

their social network and their interactions with the world (here, marketers). 



Objectives. By situating the agents within social networks with real-world properties, we are able 

to understand how adoption behavior may be optimized in light of cognitive and structural 

properties. This is especially true in the case of the cliques that are formed through small-world 

networks, where we expect that targeting on centrality measures will be less successful that 

targeting on cognitive and centrality metrics. All adoption decisions are collected from the agent 

population. 

Observation. Observations from the simulation include the adoption index of the agents, their 

centrality measures (degree and betweeness), and the SCIP values between all agents.  

5. Initialization 

Agents are initialized with uniformly distributed random belief and defense regarding their 

attitude toward a product. Firms have a uniformly distributed random quality of the product. 

Friendship networks are created as communication networks for the consumer agents – which 

are small-world, Erdos-Renyi, or power law networks (using the JUNG functionality), with a 

clustering exponent of .8, a conection probability of 0.025, or edge count of 10 times the number 

of nodes and 10000 iteration generation in the small-world, Erdos-Renyi, and power law 

networks respectively.  

7. Submodels 

ABMUSITE links together two submodels - the Cognitive Network Model (CNM), a framework 

for quantitatively characterizing individuals’ belief systems as a network of interrelated 

proposition nodes, with each node having specified quantitative parameters, and the Socio-

Cognitive Network Model (SCNM), which is intended to capture the effects of interpersonal 

communication and influence on individuals’ Belief Networks (BNs) during person-to-person 

interactions. 
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