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Abstract. With the growth of the use of social media, information is
exchanged faster than ever. Understanding this diffusion of information
is critical to planning for time sensitive events and situations. However,
most traditional models of diffusion do not work well in situations where
outside events are occurring at almost the same rate as diffusion dynam-
ics within the network. In this paper, we present two models that provide
insight into urgent diffusion dynamics using agent-based modeling. We
fit these models to data drawn from four major urgent diffusion events
including: (1) the capture of Osama Bin Laden, (2) Hurricane Irene, (3)
Hurricane Sandy, and (4) Election Night 2012. We show that in some
cases social networks play a large role in the diffusion of information and
in other cases they do not, and discuss the robustness of our models to
a wider variety of urgent diffusion situations.

Keywords: urgent diffusion, diffusion of information, news, hurricanes,
social networks, twitter

1 Motivation

In many contexts, time plays a critical role in the diffusion of information. These
events can be anything including: (1) man-made crises, such as biological and
terrorist attacks, (2) natural crises, such as hurricanes, (3) critical news events,
such as political elections or sporting events, and (4) corporate crises, such as
brand reputation issues. We refer to these situations as urgent diffusion events,
which we define to be events where outside dynamics and news are entering the
system at the same rate or even faster than information is diffusing across the
system.

Understanding how information diffuses in these situations is critical for a
number of different reasons. If the goal is to construct an optimal policy response
to a crisis, then we need to understand how information will diffuse in these
scenarios. For policymakers understanding urgent diffusion will help them get
the right word out to the right people to optimally respond to man-made or
natural crises. For news agencies, understanding urgent diffusion will allow them
to understand what news pieces are grabbing the most attention quickly. For
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brand managers, understanding urgent diffusion will facilitate effective responses
to brand crises.

In this paper, we will first discuss the relevant background literature and
then move on to discussing the models and the data we used to evaluate the
models. We will then compare model results with actual data, and discuss what
this means providing suggestions for future work in this area. Moreover, we have
attached an ODD protocol writeup of the models that we use.

2 Relevant Literature

There is an entire thread of research focused on understanding the diffusion of
information in large-scale networks, but most of it has focused on non-urgent
diffusion events. For instance, the original Bass model popular in the field of
marketing was originally constructed for understanding the diffusion of consumer
durables [1]. Though it has been applied recently to understanding the diffusion
of more ephemeral objects, such as social network apps, that was not what it
was originally intended for, and whether it works to model urgent diffusion is
an open question [2]. Another model that is frequently used to understand the
diffusion of information is the cascade model [3]. Recently the cascade model has
been applied to understanding Twitter networks, but the application was still
in a non-urgent situation [4] The cascade model was built to model the diffusion
of information, but it was created primarily to handle non-urgent situations.

There has also been some work examining the qualitative nature of urgent
diffusion and how individuals are using modern communication methods, such as
social media to address urgent situations. These events include natural disasters
and man-made disasters, but unfortunately not much of this work has discussed
quantitative models of urgent diffusion. For instance, recent work has focused
on how to process vast amounts of social media data that are diffusing urgently,
but this work does not discuss how to model the diffusion of this information,
and is built as a reactive tool rather than a planning tool [5] [6]. Other work
has focused on how to better use social media for disaster response, but again
this work does not entail a quantitative or computational model of information
diffusion in these urgent situations [7] [8].

Our paper differs from this previous work in that our goal is to build a
model that can be calibrated to different disaster scenarios and primarily used
to understand how to respond to disasters assuming that information is diffused
in the manner described by our model. As a result, our work differs from previous
agent-based models (ABMs) of information diffusion because we are concerned
with understanding urgent events, and it differs from previous work on the use of
social media in urgent situations because we are interested not in best practices
for the use of social media, but rather in modeling the status quo use of this
medium in urgent situations.
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3 The Models

There has been considerable previous work understanding and modeling the dif-
fusion of information [9] [10]. However, these models were originally built for
non-urgent scenarios and as such, may not describe the dynamics of situations
where external events are happening at the same rate or faster than the diffu-
sion process itself. Nonetheless, it make sense to start with these models and
investigate how well they can be used to match the data that we observe in
urgent contexts. In future work, we will explore modifying these models in or-
der to better account for additional urgent situations. The goal of the current
work is to explore what parameter spaces of these traditional models are the
best match to our urgent diffusion data. As such, in this paper we will examine
two agent-based implementations of two of the more prominent information dif-
fusion models, namely the Bass Model and the Independent Cascade Model. It
should be noted that there is one other information diffusion model, the Linear
Threshold Model [11][12] that we plan to explore in future work.

3.1 Bass Model

The original Bass model was developed to model the adopting of durable con-
sumer appliances [1], but it can be applied more generally to the diffusion of
information. The model is based on the assumption that people get their in-
formation from two sources, advertising and word of mouth. The Bass model
describes the fractional change in a populations awareness of a piece of informa-
tion by the equation:

F ′(t)
1− F (t)

= p + qF (t) (1)

F (0) = 0 (2)

where F (t) is the aware fraction of the population as a function of time,
p is the advertising or innovation coefficient, and q is the imitation or word-
of-mouth coefficient. Traditionally, q is an order of magnitude greater than p,
representing the fact that social communication has a greater effect on adoption
decisions than advertising effects. The equation can be interpreted as describing
a hazard rate, that is, the conditional probability that a person will become
aware of information at time t given that they are not yet aware. In this case,
the hazard rate F ′(t)/(1−F (t)) is the sum of a constant advertising effect p and
a word-of-mouth effect qF (t) that scales linearly in the fraction of population
aware.

As is clear, in its current form this is not an agent-based model. However, the
model description is easily translated to an agent-based framework, and this has
been done before [13]. First, we discretize the problem, giving unaware agents an
opportunity to become aware of the information at each time step. Then, instead
of determining a deterministic translation of some portion of the population, we
update each agents state probabilistically. If every agent observes the actions of
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every other agent in the model, then this becomes equivalent to the hazard rate
Bass model limited by discretization. However, it is more realistic to consider
how information diffuses across a network: instead of allowing each agent to be
influenced by the entire population, it is influenced only by its direct neighbors
in some underlying social network.

The agent-based Bass model is a discrete-time model in which each agent has
one of two states at each time step t: (1) unaware or (2) aware. At the beginning
of the simulation, all agents are unaware. At each time step, an unaware agent
has an opportunity to become aware. Its state changes with a probability that
reflects advertising and word-of-mouth effects. The probability that an agent
becomes aware due to word of mouth increases as a function of the fraction of
its neighbors who became aware in previous time steps. Once an agent becomes
aware, it remains aware for the rest of the simulation.

At each time step, an unaware agent becomes aware due to one of two cir-
cumstances:

1. Innovation - With probability p̂, an unaware agent becomes aware due to
outside effects (i.e., information from outside the network) where p̂ is the
coefficient of innovation.

2. Imitation - With probability f q̂, an unaware agent becomes aware due to
observing the awareness of its neighbors (i.e., information from inside the
network) where f is the fraction of neighbors who have adopted and q̂ is the
coefficient of imitation.5

The model then repeats until either all agents have become aware or a fixed
number of time steps has been reached.

3.2 Independent Cascade Model

The second diffusion model that we will be considering is the Independent Cas-
cade Model. Examined by Goldenberg et al. (2001), this model was created to
understand how information diffuses in a network, and so is very appropriate
for the context we are examining. The basic idea behind the Cascade model is
that an individual has probability q̂ of becoming aware at any time step when
m of their neighbors have become aware. There is also a small a probability p̂
that the individual becomes aware due to advertising or external news events.6

The basic intuition behind the cascade model is that information and adoption
decisions ripple through a social network in cascades, rather than in long-term
exposures such as the Bass model denotes.

For the agent-based model, a population of agents on a network is created.
All of the agents are initially unaware then at each time step each agent becomes
aware due to two circumstances that parallel the Bass rules:
5 Since p̂ and q̂ are not equivalent to the hazard rates, p and q, above, we use the

“hat” notation to separate them.
6 Though clearly the exact values of the Independent Cascade model p̂ and q̂ will differ,

their meaning is very similar. For the sake of brevity we use the same notation for
both models.



5

1. Innovation - With probability p̂, an unaware agent becomes aware due to
outside effects, i.e., information from outside the network, where p̂ is the
coefficient of innovation.

2. Imitation - With probability q̂), an unaware agent becomes aware due to ob-
serving the awareness of its neighbors, where q̂ is the coefficient of imitation.

Again, the model repeats until either all agents have become aware or a fixed
number of time steps has been reached.

4 The Data

We have collected four major datasets that we plan to use to examine the effec-
tiveness of these models in understanding the diffusion of information in urgent
situations: (1) Osama Bin Laden’s capture and death, (2) Hurricane Irene, (3)
Hurricane Sandy, and (4) the US 2012 Presidential Election. All of our data was
collected from Twitter. Twitter provides two APIs for the collection of data: (1)
a Streaming API, which enables the collection of all tweets on a particular topic,
or user, going forward, and (2) a RESTful API which enables the collection of a
very limited amount of past data, and more importantly network information.
Since we need the network information for our models, we first decided to iden-
tify a subsample of Twitter users that we would collect full network information
about, which would give us the ability to track information diffusion patterns
across these networks. To do this, we collected a snowball network sample of
15,000 active, non-celebrity users, including all of the connections between the
users. In order to contain noise, we focused on active users that were discovered
during our snowball sample. Active users that form part of our dataset issued
an average one tweet per day in their latest 100 tweets, and had at least one
retweet in their latest 100 tweets.

Once we had established this “15K network”, we could then track any number
of topics diffusing across the network in one of two ways: (1) user-focused - we
could simply collect all the tweets that those users issued over a time period,
or (2) topic-focused - we could collect all tweets on a particular topic, and then
filter out the tweets not belonging to our 15K network. Of the four datasets, only
the Osama Bin Laden data was collected using the user-focused method, and all
other datasets were collected using the topic-focused method. All of this data
was collected from Twitter using the streaming API and a tool called TwEater
that was developed in-house to collect Twitter data and dump it into a MySQL
database or CSV file. TwEater is freely available on Github7.

Once we had collected all of this data, we then post-processed it to identify
the first time any user of the 15K network tweeted about the topic at hand. The
time of a user’s first tweet about a topic is our estimate of when the user became
aware of the event (topic). For quick visualization, we then built network figures
showing the spread of information through the 15K network. In these figures each
node represents a Twitter user and the edges represent relationships between
7 http://www.github.com/dmonner/tweater/
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the Twitter users. These figures show the flow of new information disseminated
through the network to each user, so every edge entering each node except for the
earliest one was deleted. To generate these figures, a list of relationships between
the users in the collections for each of the events were sorted chronologically.
They were then filtered to only include the first tweet received by each user
about the event. This list was then imported into Gephi 0.8.2 [14] to generate
the figures. The default Force Atlas settings were used, and the program was left
to run for several days until changes in the node locations, over the course of 4
hours, were barely noticeable. In the figures, several nodes can be seen floating
without any relationship lines attached to them. These floating clusters are two
nodes connected by one edge representing a tweeter whose tweet informed only
one new person of the event.

Of course, not every member of the 15K network tweeted about every event,
and we also made a distinction between people who initially tweeted about an
event and those who tweeted only after someone they followed tweeted about the
event. In the figures, the announcement about the death of Osama Bin Laden
dataset contains 13,842 edges, which come from an initial 1,231 tweeters (See
Figure 1). The Hurricane Irene dataset contains 14,373 edges, which come from
an initial 814 tweeters (See Figure 2). The Hurricane Sandy dataset contains
14,508 edges, which come from an initial 839 tweeters (See Figure 3). The election
dataset contains 13,408 edges, which come from an initial 832 tweeters (See
Figure 4).

Fig. 1: Visualization of Osama Bin
Laden Diffusion.

Fig. 2: Visualization of Hurricane Irene
Diffusion.
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Fig. 3: Visualization of Hurricane
Sandy Diffusion.

Fig. 4: Visualization of US 2012 Presi-
dential Election Diffusion.

Finally, we cleaned up the data to make it easily comparable to the model
results. Using the same data that we used to create the graphs, we placed all of
the data into bins of 1 hour intervals. This allowed us to then build a standard
adoption curve, where for every hour of the dataset we were interested in there
was a single number associated that was the number of cumulative adopters of
the information at that point.

5 Results of the Comparison

The next step was to compare the model to the data. Since there was no obvious
way to set the p̂ and q̂ parameters in the models to achieve the best comparison
to data. Thus, we conducted a grid search to find parameter values that best
matched the underlying data. Initially we searched the space coarsely at 0.01
increments, and then looked at a more detailed level at 0.001 levels. For each
model, and for each dataset we ran the model 10 times across this space. We then
compared the simulated data to the real data, using Mean Absolute Percentage
Error (MAPE), which is the difference between the true vale at time t and the
mean value of time t, divided by the true value at time t and averaged over all
values:

MAPE =
1
n

n∑
t=0

|truet − simulatedt|
truet

(3)
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Table 1 gives the range that we investigated for each of the parameters, and
the values (p̂∗, q̂∗) which minimized the average MAPE across all ten runs.

model dataset p̂ range q̂ range p̂∗ q̂∗

cascade bin laden 0.045 0.080 0.040 0.080 0.065 0.060

cascade irene 0.001 0.034 0.014 0.054 0.014 0.034

cascade sandy 0.001 0.027 0 0.020 0.007 0

cascade election 0.014 0.054 0 0.028 0.034 0.008

bass bin laden 0.079 0.119 0 0.021 0.099 0.001

bass irene 0.005 0.045 0 0.020 0.025 0

bass sandy 0.001 0.024 0 0.029 0.004 0.009

bass election 0.015 0.055 0 0.023 0.035 0.003

Table 1: Range of parameter values and optimum values as determined by lowest
MAPE.

The comparison between the underlying data and the model results is visible
in the following graphs. Figures 5 and 6 illustrate the two fits to the Bin Laden
data. Figures 7 and 8 illustrate the two fits to the Hurricane Irene data. Figures
9 and 10 illustrate the two fits to the Hurricane Sandy data. Figures 11 and 12
illustrate the two fits to the US 2012 Presidential Election data.

Fig. 5: Comparison of best matching
Bass model to Bin Laden data.

Fig. 6: Comparison of best matching
cascade model to Bin Laden data.

To further explore the sensitivity of the model to the parameters that we were
exploring, we also explored the full MAPE values for all of the p̂ and q̂ values
around the identified optimal values. Heatmaps of these results are presented in
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Fig. 7: Comparison of best matching
Bass model to the Hurricane Irene
data.

Fig. 8: Comparison of best matching
cascade model to the Hurricane Irene
data.

Fig. 9: Comparison of best matching
Bass model to the Hurricane Sandy
data.

Fig. 10: Comparison of best matching
cascade model to the Hurricane Sandy
data.

the following figures. Figures 13 and 14 illustrate sensitivity of the Bin Laden
data. Figures 15 and 16 illustrate the sensitivity of the Hurricane Irene data.
Figures 17 and 18 illustrate the sensitivity of the Hurricane Sandy data. Figures
19 and 20 illustrate the two fits to the US 2012 Presidential Election data. In
these heat maps, lower values are darker blues, and higher values are brighter
reds, so areas of dark blue indicate areas with minimal errors and, thus, closest
fits.

6 Discussion and Future Work

Based on the comparison between the model and real data, It appears that
the models can fit the data better for the hurricane cases, which have longer
time horizons and, we hypothesize, numerous subevents. In some ways these
events are closer to the type of diffusion events that these models were originally
created for. The Bin Laden and Election cases have shorter time horizons, and
the models do not fit as well. However, despite the fact that these models were
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Fig. 11: Comparison of best matching
Bass model to the Election data.

Fig. 12: Comparison of best matching
cascade model to the Election data.

Fig. 13: Heat map illustrating the sen-
sitivity of the Bass model on the Bin
Laden data.

Fig. 14: Heat map illustrating the sensi-
tivity of the Cascade model on the Bin
Laden data.

not originally created to examine the diffusion of urgent information, they fit
fairly well.

The heat maps also indicate that for most of the models and datasets that we
examined there is a range of values that produce similar results. This seems to
indicate that though we have identified “optimal” values for each of the network
and model combinations, there is a range of values for which the match will be
fairly good. This indicates that one does not have to have the values exactly right
to get decent predictive value. Moreover, the differences between the Bass and
Cascade models, both in terms of the robustness of the results and the best fits,
were not very significant, which indicates that of these two models there is not
a clear “best” model, so either is appropriate for future exploration. However,
it does appear that the event has a large impact on the fit of the results, which
seems to indicate that having the ability to classify events ahead of time in order
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Fig. 15: Heat map illustrating the sen-
sitivity of the Bass model on the Hur-
ricane Irene data.

Fig. 16: Heat map illustrating the sensi-
tivity of the Cascade model on the Hur-
ricane Irene data.

to identify appropriate ranges of these values is useful, and is something we will
explore in future work.

We hypothesize that we can improve these models in a number of different
ways to improve their accuracy. The basic Bass model and the Independent Cas-
cade model were originally created for longer time frames, and urgent diffusion
events happen on a much faster pace, especially given the current 24-hour news
cycle. In previous work, we have built an equation-based model that takes into
account the diurnal cycle of Twitter activity, and achieves much better fits. This
is clearly illustrated in the Osama bin Laden case, where the diurnal cycle is
readily apparent in Figures 5 and 6. Second, the basic idea behind urgent dif-
fusion is that there are external news events entering the system at a time rate
that is faster than the speed of diffusion within the network. If we can model
the entrance of this external information, we could also improve the model. We
have previously done this in the math-based model, by simply estimating a daily
”shock“ to the system, and this method could easily be adapted to the agent-
based model, though it would introduce a number of new parameters to the
system. In future work, we hope to tie the external shocks directly to another
data source such as stories in mainstream media.

The overall goal for this project is to provide recommendations for policy
makers, brand managers, and other interested parties about how information
will diffuse in urgent situations. Eventually, we would like to make these models
predictive, by providing a set of guidelines for how to run a model for an event
that is in the process of occurring, by tying the type of event to the parameter
space. For instance, it is possible that hurricanes always generate ”Type 1“
events which would be different than major news stories, such as the Bin Laden
or Election data, which could be called ”Type 2“ events. This would then provide
interested stakeholders with a set of parameters to feed into the system, giving
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Fig. 17: Heat map illustrating the sen-
sitivity of the Bass model on the Hur-
ricane Sandy data.

Fig. 18: Heat map illustrating the sensi-
tivity of the Cascade model on the Hur-
ricane Sandy data.

them the ability to predict how fast and to whom information would diffuse.
This, in turn, would allow them to make decisions about how to reach out with
accurate information and what to expect in terms of overall adoption of a given
information topic.
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8 ODD Protocol

In this section, we will describe the model in more detail, using a description
based on ODD (Overview, Design concepts, Details) protocol for describing
individual- and agent-based models [15].

8.1 Purpose

The purpose of this model is to better understand the diffusion of information
in urgent situations. The model is intended to be used by any number of stake-
holders to understand how a particularly urgent topic might diffuse through a
large group of individuals on social media. With this understanding, users might
be able to better engage with social media, and better understand real-world
reactions to conversations on social media.
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Fig. 19: Heat map illustrating the sensi-
tivity of the Bass model on the Election
data.

Fig. 20: Heat map illustrating the sen-
sitivity of the Cascade model on the
Election data.

8.2 Entities, state variables, and scales

One basic entity in the model is a user of social media who is interesting in
consuming and transmitting information. All told these entities exist within the
general scope of a social network, via a social media platform. In this paper,
we examined individuals involved in Twitter conversations. As a result, another
basic entity of the model is the link or relationship between two individuals.
These links mean that one user is connected to another user in a way that enables
the transmission of information. In the case of Twitter, we use the following
relationship as indication of a social connection.

The social media user agents in the model have a number of different state
variables. First, they have a property which specifies whether or not they have
adopted the new piece of information. In addition, they have both a p̂,which is
the coefficient of innovation, and q̂ which is the coefficient of imitation. These
determine how individuals make a decision to adopt or not adopt a new piece
of information. All agents in the model also possess a set of links which are
the social relationships of that user to other users. In the current version of the
model, the links themselves have no properties, but are directed links indicating
that one user ”follows“ another user on Twitter.

As to the scales of the properties and entities, there is a one-to-one mapping
between social media user agents and real Twitter users as identified by our 15K
collection. This collection is a snowball network sample of 15,000 active, non-
celebrity users, including all of the connections between those users. In order
to contain noise, we focused on active users that were discovered during our
snowball sample. Active users that form part of our dataset issued an average
one tweet per day in latest 100 tweets, and had at least one retweet in the latest
100 tweets. Also with respect to scale, the p̂ and q̂ properties can be considered
to be probabilities of an event occurring. Finally, the time step of this model is
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one hour. All simulations were run for the length of time that it took to match
the underlying data.

8.3 Process overview and scheduling

The underlying process model is fairly simple. The basic idea is that all agents
are initialized to an unadopted state, and at the same time the social network
between the agents is constructed. Then at each time step any agents which
still have not adopted the new information, determine (probabilistically) if they
should adopt the new information based on p̂ and q̂ and the state of their neigh-
bors. This basic overview is true regardless of which model of adoption (Bass or
Cascade) is being used; the only thing that changes is the decision rule.

The submodels will be discussed below but the basic processes are:

1. Initialize Network and Agents
2. Repeat for Number of Hours in Event

(a) For each Social Media User Agent that has not adopted:
i. Decide to Adopt based on p̂ and q̂
ii. Update State of Agent based on Decision

(b) Update Statistics

8.4 Design Concepts

In this section we will explore the design concepts of the model.

Basic Principles The basic principle of the model is to explore the best way
to match urgent diffusion of information in social media networks. The goal is
to use this model to help practitioners to make better decisions about how to
interact with users of social media in a crisis situation.

Emergence The key aspect of this model that is emergent is the overall adop-
tion rate of the new information. This is modeled by assuming that a small
percentage of the population finds out about the new information every time
step and that they spread that information via their social networks.

Adaptation Agents in the model are not really adaptive since they do not
change as a result of their past experience. Instead they simply react to the
presence of information among their neighbors and then decide whether or not
to adopt the information.

Objectives The agents do not have particular objectives, but instead simply
make decisions about whether or not to adopt novel information.

Learning The agents in the model do not learn.
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Prediction Agents do not make any predictions about future states of the
world.

Sensing The social media user agents can sense the state of their immediate
neighbors that they are following. For instance, they know what fraction of their
neighbors have adopted the information, and whether or not it was adopted in
the previous time step. p̂ can also be thought of as the sensing of an external
source of information that informs the agent about the new information.

Interaction The social media user agents interact with each other by exchang-
ing new information. Each agents determines whether or not to adopt the new
information based on the submodels described below.

Stochasticity At each time step of the model, each agent who has not adopted
the information draws random numbers on the uniform interval [0,1] to deter-
mine if they should adopt the information or not. These random numbers are
compared to both p̂ and q̂ to determine if they should adopt the information or
not. Because of this each run of the model can result in very different diffusion
patterns.

Collectives There is one major collective in the model, which is the social
network connecting all of the users. Of course, in the standard social network
sense, cliques also exist within the networks which can be thought of as smaller
collectives.

8.5 Observation

For the purposes of this paper, the observation we are most concerned with is
the overall adoption of the information at each time step of the model run. We
are then comparing this information to empirical data to determine which values
of p̂ and q̂ best match the observed empirical data.

8.6 Initialization

The following steps are the major parts of the initialization:

1. Create a number of social media user agents equivalent to the final number
that tweet in this dataset

2. Initialize all of the social media user agents to the unadopted state
3. Set the p̂ and q̂ of all agents to the values currently being explored
4. Connect the social media agents together using the social network data from

the 15K network
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8.7 Input Data

The only major source of input data is the 15K network data about who is
collected to whom in Twitter, based on the snowball sample described in En-
tities section of the ODD protocol. However, there were also four datasets col-
lected from Twitter by filtering out tweets that matched certain keywords. These
datasets were used to establish the validity and examine differences in the un-
derlying model:

1. Bin Laden - this dataset examines the 48 hours after Osama Bin Laden’s
capture and death, and contain all of the tweets that had the words related
to this event in them. The dataset contains 13,842 edges, which come from
an initial 1231 tweeters

2. Irene - This dataset examines roughly a week around the landfall and af-
termath of Hurricane Irene. This dataset contains 14,373 edges, which come
from an initial 814 tweeters.

3. Sandy - This dataset examines roughly a week around the landfall and af-
termath of Hurricane Sandy. The dataset contains 14,508 edges, which come
from an initial 839 tweeters.

4. Election - This dataset examines the 25 hour period from midnight the night
before the US 2012 Presidential National election to 1 AM the next morning.
The election dataset contains 13,408 edges, which come from an initial 832
tweeters.

Since these datasets describe the total space of people who discussed these
topics within the 15K dataset they were used to determine how many agents
would be created in each model.

8.8 Submodels

There are two major submodels that are involved in the decision of users to
adopt: (1) the Bass model, and (2) the Cascade model.

Bass Model Based on a hazard-rate model that was originally developed to
understand the adoption of consumer durables [1], the agent-based Bass model
is a discrete-time model in which each agent has one of two states at each time
step t: (1) unaware or (2) aware. At the beginning of the simulation, all agents
are unaware. At each time step, an unaware agent has an opportunity to become
aware. Its state changes with a probability that reflects advertising and word-
of-mouth effects. The probability that an agent becomes aware due to word of
mouth increases as a function of the fraction of its neighbors who became aware
in previous time steps. Once an agent becomes aware, it remains aware for the
rest of the simulation.

At each time step, an unaware agent i becomes aware due to one of two
circumstances:
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1. Innovation - With probability p̂, an unaware agent becomes aware due to
outside effects, i.e., information from outside the network, where p̂ is the
coefficient of innovation.

2. Imitation - With probability f q̂, an unaware agent becomes aware due to
observing the awareness of its neighbors, where f is the fraction of neighbors
who have adopted and q̂ is the coefficient of imitation.

Independent Cascade Model The second diffusion model that we examined
was the Independent Cascade Model [3]. The basic idea behind the Cascade
model is that an individual has q̂ probability of becoming aware at any time
step when m of their neighbors have become aware. There is also a small a
probability p̂ that the individual becomes aware due to advertising or external
news events. The basic intuition behind the cascade model is that information
and adoption decisions ripple through a social network in cascades, rather than
in long-term exposures such as the Bass model denotes.

For the agent-based model, a population of agents on a network is created,
and all of the agents are initially unaware then at each time step each agent
becomes aware due to two circumstances that parallel the Bass rules:

1. Innovation - With probability p̂, an unaware agent becomes aware due to
outside effects, i.e., information from outside the network, where p̂ is the
coefficient of innovation.

2. Imitation - With probability q̂), an unaware agent becomes aware due to
observing the awareness of its neighbors, where m is the number of neigh-
bors who have adopted in the previous time step and q̂ is the coefficient of
imitation.

References

1. Bass, F.M.: A new product growth for model consumer durables. Management
Science 15(5) (January 1969) 215–227

2. Trusov, Michael, Rand, W., Joshi, Yogesh: Product diffusion and synthetic net-
works: Improving pre-launch forecasts with simulated priors. Working Paper (2013)

3. Goldenberg J., Libai B., Muller E.: Talk of the network: A complex systems look at
the underlying process of word-of-mouth. Marketing Letters 12(3) (2001) 211–223

4. Lerman, K., Ghosh, R.: Information contagion: An empirical study of the spread of
news on digg and twitter social networks. In: International Conference on Weblogs
and Social Media. (2010)

5. Verma, S., Vieweg, S., Corvey, W.J., Palen, L., Martin, J.H., Palmer, M., Schram,
A., Anderson, K.M.: Natural language processing to the rescue?: Extract-
ing’Situational awareness’ tweets during mass emergency. Proc. ICWSM (2011)

6. Yin, J., Lampert, A., Cameron, M., Robinson, B., Power, R.: Using social media
to enhance emergency situation awareness. IEEE Intelligent Systems 27(6) (2012)
52–59

7. Abbasi, M.A., Kumar, S., Filho, J.A.A., Liu, H.: Lessons learned in using social
media for disaster relief - ASU crisis response game. In Yang, S.J., Greenberg,
A.M., Endsley, M., eds.: Social Computing, Behavioral - Cultural Modeling and



18

Prediction. Number 7227 in Lecture Notes in Computer Science. Springer Berlin
Heidelberg (January 2012) 282–289

8. Shklovski, I., Palen, L., Sutton, J.: Finding community through information and
communication technology in disaster response. In: Proceedings of the 2008 ACM
conference on Computer supported cooperative work. CSCW ’08, New York, NY,
USA, ACM (2008) 127136

9. Rogers, E.M.: Diffusion of innovations. Simon and Schuster (2010)
10. Valente, T.W.: Network Models of the Diffusion of Innovations (Quantitative Meth-

ods in Communication Series). Hampton Press (NJ)(January 10, 1995) (1995)
11. Granovetter, M.: Threshold models of collective behavior. American journal of

sociology (1978) 1420–1443
12. Watts, D.J.: A simple model of global cascades on random networks. Proceedings

of the National Academy of Sciences 99(9) (2002) 5766–5771
13. Rand, W., Rust, R.T.: Agent-based modeling in marketing: Guidelines for rigor.

International Journal of Research in Marketing 28(3) (2011) 181–193
14. Bastian, M., Heymann, S., Jacomy, M.: Gephi: an open source software for explor-

ing and manipulating networks. In: ICWSM. (2009)
15. Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F.:

The odd protocol: a review and first update. Ecological Modelling 221(23) (2010)
2760–2768


