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Abstract

Empirical studies of agrarian production in developing countries have historically found that smallholders
possess a productivity advantage over larger farms. Eswaran and Kotwal (1986) famously derive this in-
verse farm-size/productivity relationship from the structure of agrarian production. The focal prediction
of their model is that, in otherwise equivalent economies, a more egalitarian land distribution raises out-
put and producer welfare. The traditional (spot) procurement system implicit in the Eswaran and Kotwal
model, however, diverges fundamentally from modern (contractual) procurement practices. We therefore
develop a new model of agrarian production and ask how the welfare effects of land redistribution change
with the introduction of such modern value chains. In our model, the inverse farm-size/productivity

relationship persists, but the effects of land redistribution change.
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1 Introduction

Population growth, rising incomes, and continued urbanization are increasing food demand in developing
economies. Accordingly, FAO (2011) predicts that food prices will become substantially higher and more
volatile unless global agricultural production nearly doubles by mid-century. Due to continuing land scarcity,
lackluster productivity growth, and little remaining farm price repression, the policy options for increasing
agricultural production in developing countries are limited. However, due to the often-observed productivity
advantage of small-scale agricultural producers in developing countries, redistributive land reform has been
proposed not only as a means to increase equity and reduce poverty, but also as a means to improve
agricultural productivity (Eswaran and Kotwal, 1986; Lipton, 2009; Keswell and Carter, 2014).1

Eswaran and Kotwal (1986, hereafter EK) famously predict that, in otherwise equivalent economies, more
egalitarian land distributions raise output and producer welfare. Adopting their terminology, EK’s key result
is that greater “equity” also improves “efficiency.” As a model of modern agrarian economies, however, the
EK model has a substantial shortcoming: each producer faces a single output market, which is implicitly an
informal spot market. Barrett et al. (2012) show that this institutional arrangement is no longer descriptive
of many developing countries. The growth of export horticulture, the diffusion of supermarkets, and the
proliferation of grades and standards have led to the modernization of agricultural value chains. Contract
farming has become central to modern procurement systems, but scale-biased participation raises questions
as to the contemporary policy relevance of redistributive measures. (See section 2.2 for details.)

We therefore re-examine the equity-efficiency relationship in a model better suited to the new agricultural
economy. Specifically, we extend the EK model by adding a modern agricultural value chain, as described
by Barrett et al. (2012). While the inverse farm-size/productivity relationship persists in our model, we
find that a more egalitarian land distribution leads to non-monotonic changes in key model outcomes (e.g.,
producer welfare). In this sense, we find an eventual “equity-efficiency” tradeoff in the distribution of land.
Our results thus suggest that the case for redistributive measures has been diminished by the emergence
of modern agricultural value chains. In what follows, section 2 provides relevant background information,
section 3 presents our model of the new agricultural economy, section 4 discusses results and sensitivity

analysis, and section 5 concludes.

1Lipton (2009, p.328) defines redistributive land reform as “legislation intended and likely to directly redistribute ownership
of, claims on, or rights to current farmland, and thus to benefit the poor by raising their absolute and relative status, power,
and/or income, compared with likely situations without the legislation.”



2 Background

This section comprises two short and fairly independent subsections. The first subsection discusses EK in the
context of the empirical and theoretical work on the relationship between farm size and productivity. The
second subsection motivates our theoretical model by considering the recent restructuring of global agri-food

systems and the rise of modern value chains.

2.1 Farm Size and Productivity

Empirical studies of agrarian production in developing countries have historically found that smallholders
possess a productivity advantage over larger farms. The Indian Ministry of Food and Agriculture’s Studies
in the Economics of Farm Management (SEFM) was among the first to document an inverse relationship
between farm size and land productivity (Sen, 1962). In the 1970s and 1980s, a number of influential cross-
country studies observed this inverse relationship across Africa, Asia, and Latin America (Barraclough,
1973; Berry and Cline, 1979; Cornia, 1985). More recent empirical studies have investigated the relationship
between farm size and profitability, and have also found a robust negative relationship (van Zyl, Binswanger,
and Thirtle, 1995; Heltberg, 1998; Deininger, Zegarra, and Lavadenz, 2003).2

Labor market imperfections have occupied a central role in the leading explanations of the inverse rela-
tionship.® In his “dual labor cost theory,” Sen (1966) contended that there exists a gap between the real
cost of labor in peasant farming and the market wage rate. Since capitalist farms face higher equilibrium
labor costs, peasant farms use labor more intensively and witness greater land productivity. Bhagwati and
Chakravarty (1969), however, found that the inverse relationship persists when examining only capitalist
farms. Further, Feder (1985) argued that multiple factor market imperfections must be present to generate
a systematic relationship between farm size and productivity. Building on the “dual labor cost theory,” EK
influentially incorporated such considerations into a revised theoretical model of the inverse relationship.

Drawing on the seminal work of Roemer (1982), EK developed a single-period model of class formation
in an agrarian economy characterized by labor-market and credit-market imperfections. In the model, hired
labor requires supervision due to moral hazard, and access to credit largely depends on the amount of

land an agent owns. Given such imperfections, EK found land-to-labor ratios to be increasing in land

20ther widely-cited empirical studies include Yotopoulos and Lau (1973), Carter (1984), Bhalla and Roy (1988), Assungio
and Braido (2007), and Barrett, Bellemare, and Hou (2010). While a number of the empirical studies have been challenged as
reflecting statistical artifacts, these challenges have in turn been challenged. See, for example, Carter (1984), Barrett, Bellemare,
and Hou (2010), and Carletto, Savastano, and Zezza (2013). For detailed reviews of the controversy, see Binswanger, Deininger,
and Feder (1995) and Eastwood, Lipton, and Newell (2010).

3A number of other explanations have been put forth (e.g., decreasing returns to scale, land quality heterogeneity, and
differential responses to uncertainty), but much of the empirical work supports the labor market imperfections hypothesis
(Barraclough, 1973; Berry and Cline, 1979; Carter, 1984; Cornia, 1985; Binswanger, Deininger, and Feder, 1995; van Zyl,
Binswanger, and Thirtle, 1995; Heltberg, 1998; Deininger, Zegarra, and Lavadenz, 2003). See Henderson (2015) for a detailed
review of the literature.



endowments, which implies an inverse relationship between land productivity and ownership landholdings.
Correspondingly, EK demonstrated that a more egalitarian distribution of land ownership increases aggregate
agricultural production, enhances overall welfare, and reduces poverty. Even the landless were found to
benefit from redistributive measures, due to increased labor demand and a corresponding rise in wages.

EK assume that each producer faces a single output market, which is implicitly an informal spot market.
The recent radical restructuring of global agri-food systems raises important questions about this assumption,
since such traditional (spot) procurement systems diverge fundamentally from modern (contractual) procure-
ment practices. Specifically, economies of scale in finance and access to capital imply scale-variant grower
capacity to meet the demands of modern value chains. Further, scale-invariant contract-related transaction
costs suggest that larger-scale private trading and marketing could reduce costs (Collier and Dercon, 2009).
As discussed in the next subsection, scale-biased participation in modern contractual farming arrangements

may alter predictions about the welfare benefits from redistributive land reform.

2.2 Modern Value Chains

Since the early 1980s, global agri-food systems have undergone a continual and fundamental transformation,
especially in developing countries. Developments on the demand side (e.g., rising incomes and increasing
urbanization) and supply side (e.g., foreign direct investment and changing technology) stimulated growth
in export horticulture, the dissemination of supermarkets, and the proliferation of grades and standards
(McCullough, Pingali, and Stamoulis, 2008; Reardon, Timmer, and Berdegué, 2008; Eastwood, Lipton, and
Newell, 2010). The diffusion of supermarkets has been particularly dramatic. For example, Reardon and
Berdegué (2002) found that supermarket shares in Latin America increased from 10-20 percent of national
retail sales in 1990 to 50-60 percent by 2000. Reardon et al. (2003) observed comparable patterns in eastern
and southeastern Asia (e.g., Taiwan, the Philippines, and the Republic of Korea) as well as southern and
eastern Africa (e.g., South Africa and Kenya). Dries, Reardon, and Swinnen (2004) documented similar
changes in central and eastern Europe (e.g., Czech Republic, Hungary, and Poland).

Traditional wholesalers and brokers in developing nations typically rely on informal, spot transactions.
However, the restructuring of agricultural output markets has commonly supported the augmented quality
standards of downstream entities (e.g., supermarkets and export firms) through parallel modern procure-
ment systems (McCullough, Pingali, and Stamoulis, 2008; Reardon et al., 2009). These parallel systems
often include specialized wholesalers, centralized rather than per-store procurement, the standardization
and harmonization of product and delivery attributes, and a reliance on contract farming (Reardon et al.,

2003; Reardon, Timmer, and Berdegué, 2008; Barrett et al., 2012). The modern-sector prevalence of con-



tract farming diverges fundamentally from traditional-sector practices.* Empirical studies of the effects of
such arrangements suggest that they can raise grower welfare and enhance rural development by increasing
productivity, profitability, and employment.® However, in many scenarios these gains appear quite limited
(Singh, 2002; Sivramkrishna and Jyotishi, 2008; Escobal and Cavero, 2011; Barrett et al., 2012).

Two common features of contractual farming arrangements can limit producer gains: the monopsony
power of procuring firms, and the exclusion of smaller-scale producers. Contract farming in developing-
country agriculture is frequently characterized by monopsonistic or oligopsonistic competition: a single large
buyer (or possibly a few buyers) chooses the terms (e.g., prices, quantities, or quality) of contracts available
to numerous sellers. The rapid consolidation of supermarkets in developing countries is illustrative. In
Latin America, on average approximately two-thirds of the supermarket sector is controlled by the top
five chains, with some particularly high concentrations in Central America (Reardon and Berdegué, 2002).6
Similar patterns have been documented in Africa, Asia, as well as central and eastern Europe (Neven et al.,
2009; Hu et al., 2004; Dries, Reardon, and Swinnen, 2004). This consolidation of downstream segments
raises concerns that the potential benefits of contract farming are restricted by asymmetric power in the
negotiation of contractual terms (Sivramkrishna and Jyotishi, 2008).

Additional concerns arise as agro-industrial firms often eschew contracting with smaller-scale, less capital-
intensive producers (Barrett et al., 2012). In Africa, such exclusion has been observed in Ghana (Trienekens
and Willems, 2007), Kenya (Rao and Qaim, 2011), Senegal (Maertens and Swinnen, 2009), South Africa
(Trienekens and Willems, 2007), and Uganda (Bolwig, Gibbon, and Jones, 2009). Asian examples include
China (Stringer, Sang, and Croppenstedt, 2009), India (Singh, 2002), and Indonesia (Simmons, Winters,
and Patrick, 2005). In Latin America, exclusion has been documented in Brazil (Farina, 2002), Costa Rica
(Alvarado and Charmel, 2002), Guatemala (Herndndez, Reardon, and Berdegué, 2007), Mexico (Key and
Runsten, 1999), Nicaragua (Michelson, Reardon, and Perez, 2011), and Peru (Escobal and Cavero, 2011). A
few studies document cases of smallholder inclusion, but this is rare and usually reflects special circumstances.
For example, outside assistance is occasionally provided to a procuring firm or contracted producers as a
result of partnerships between public-sector and private-sector stakeholders, as has been observed in Kenya,
South Africa, Thailand, and Zimbabwe (Boselie, Henson, and Weatherspoon, 2003).

Scale-biased participation can arise from scale-variant grower capacity to meet requisite standards or

scale-invariant contract-related transaction costs. Scale-variant capacity to meet modern-sector standards

4Singh (2002, p.1621) defines contract farming as “a system for the production and supply of agricultural produce under
forward contracts, the essence of such contracts being a commitment to provide an agricultural commodity of a type, at a time
and a price, and in the quantity required by a known buyer.”

5See, for example, Warning and Key (2002), Simmons, Winters, and Patrick (2005), Bolwig, Gibbon, and Jones (2009),
Minten, Randrianarison, and Swinnen (2009), and Miyata, Minot, and Hu (2009).

6In Guatemala, Costa Rica, and El Salvador these figures reach as high as 99, 96, and 85 percent, respectively.



can be understood in terms of grower-side incentives and constraints. On the one hand, most costs associated
with modern-sector production are fixed and “up front.” Examples include the cost of information search
(e.g., learning to grow crops of the desired shape, flavor, or variety), physical capital investment (e.g.,
irrigation technology), certification (e.g., EurepGAP/GLOBALGAP), and collective action (e.g., forming
producer cooperatives).” On the other hand, benefits generally accrue post-harvest. The principal motivation
for selling in high-value markets is the ultimate receipt of output price premiums, which may arise from
product quality differences, compliance incentives, or the ability to capture a greater part of the marketing
margin (Minten, Randrianarison, and Swinnen, 2009; Neven et al., 2009).8 Producers often require credit
to overcome this temporal mismatch, but cash-strapped smallholders typically have limited access to formal
and informal lending institutions (Stiglitz and Weiss, 1981; Carter, 1988; Santos and Barrett, 2011).

Scale-biased participation also arises from contract-related transaction costs, which can be understood
in terms of procurer-side incentives. An agro-industrial firm pursues contractual farming arrangements
in order to minimize transaction, production, and management costs across available alternatives (Herath
and Weersink, 2009). Predominant costs include the search for prospective growers, the screening of those
growers, the negotiation of contracts, the transfer of goods, services, or property rights, the monitoring of
grower behavior, and the enforcement of the terms of the contract (Key and Runsten, 1999). These costs are
largely independent of the scale of the grower, thereby creating an incentive for the procuring firm to increase
the average scale of contracted producers. Procurer-side incentives can therefore be a critical determinant
of grower contracting opportunities (Key and Runsten, 1999; Simmons, Winters, and Patrick, 2005).

In summary, this subsection has reviewed a number of “stylized” facts about agricultural value chains
in developing economies. First, modern value chains commonly exist in parallel to traditional channels.
Second, modern channels are frequently characterized by monopsonistic procurers. Third, in order to reap
the benefits of modern-sector participation (e.g., output price premiums), prospective growers typically must
bear the burden of substantial fixed costs—an obstacle that credit-constrained smallholders find difficult to
overcome. Finally, downstream entities in the modern sector typically incur fixed contract-related transaction
costs in return for the timely delivery of a quality product. In the next section, we incorporate such stylized

facts into a theoretical model of a modern agricultural economy.

7See Key and Runsten (1999) on information costs, Farina (2002) on irrigation technology, Ashraf, Giné, and Karlan (2009)
and Asfaw, Mithofer, and Waibel (2010) on certification, and Blandon, Henson, and Cranfield (2009) on producer cooperatives.

8Other benefits include reduced risk and variability as modern-sector output prices can be considerably less volatile (Michel-
son, Reardon, and Perez, 2011), and resource provision as agro-industrial firms commonly offer specialized inputs (e.g., seeds,
fertilizers, pesticides, etc.) to overcome issues associated with thin or missing markets (Key and Runsten, 1999).



3 A New Model of Agrarian Production

Recall that EK predict that egalitarian land distributions enhance productivity and welfare. However, also
recall that the EK model lacks a modernized value chain, raising questions about its contemporary policy
relevance. In this section, we introduce our new model of agrarian production, which seeks to remedy this
shortcoming. The model has two types of agents: a single monopsonistic procurer, and N producers. Section
3.1 provides a detailed discussion of procurer behavior, section 3.2 describes producer behavior, and section

3.3 outlines our computational implementation and presents our baseline parameterization of the model.

3.1 Procurer Behavior

The procurer is a modern, profit-maximizing processor or distributor of agricultural commodities. While
the procurer is a price taker in world markets, it has monopsony power locally where it purchases output
from contracted growers. We consider a stylized version of the procurer’s optimization problem where real

procurer profits are

H(p) = (P —p) - Qulp) (1)

and where P is the relative world price (i.e., the procurer’s selling price), p is the relative procurement price,
and Q) is the contracted quantity for the modern sector.” So (P — p) - Qs is real net revenue generated by
procurement and distribution.!©

Prices are relative to the output price in traditional markets. If p < 1 there is no output price premium,
so all producers will forego any contractual farming arrangements and produce for the traditional sector. If
p > P the procurer does not find it profitable to contract any producers. Procurer profits are therefore zero
for p <1 or p > P. With p as its choice variable, the procurer seeks a constellation of contracted growers
that maximizes profits. A profit maximum will be characterized by p € [1, P].

Since producers are attracted to the modern sector by the price premium, @,; depends on p. Suppose

for a moment that Qps(p) is increasing at p = 1, concave, and differentiable. Then the procurer’s problem

has a predictable solution, with first-order condition

0=(P—p)-Qulp) — Qulp) (2)

This says that, at the profit maximizing p, the profit from marginal procurement must just offset the cost

9Letting the procurer also incur contract-related transaction costs does not alter our core results.

10We assume that p is uniform across contracted producers. Our assumption of a uniform procurement price appears
reasonable, since procuring firms conventionally pay uniform prices (Sivramkrishna and Jyotishi, 2008). To illustrate, although
Campbell’s briefly offered seven different types of contracts in Mexico in the mid-1980s, the array of different procurement
prices was short-lived. Implementation was costly and the firm was pressured by other plants to adopt constant and uniform
pricing (Key and Runsten, 1999).



of paying all growers a higher price.

However, there is no such simple analytic solution to the procurer problem. One issue is that the response
of Qs to p is mediated through factor market adjustments: when the procurer sets p, producer incentives
change, and this causes adjustments in factor markets that affect supply to the procurer. An additional
problem arises as producers decide discretely whether to participate or not. Given a finite set of producers,
small changes in p can cause discrete changes in supply. We approach these issues computationally. We
compute a general equilibrium where the producer’s choice of p is optimal for the prevailing factor prices,

which in turn are an equilibrium response to p. (For details, see our online supplementary appendix.)

3.2 Producer Behavior

Producers are price takers and utility maximizers. They are heterogeneous: they differ in the quantity of land
owned, and some are landless. Let Ny and N; be the number of landless and land-owning agents, so the total
number of producers is N = Ny + N;. The region has H (abstract) units of land, which are homogeneous in
quality, and land ownership is Pareto distributed with equality index § € (0,1].1' By increasing §, we can
explore the effect of more egalitarian distributions of landholdings on the model outcomes.

Producers derive utility from real income (Y) and time reserved for non-market activities (¢,). For

brevity, we will refer to ¢, as leisure time. All our functional forms come directly from EK, so we have

Ut,,Y) =DV, +Y (3)

where D is a positive parameter. Our characterization of producers follows the EK model, with one exception:
producers may now choose to produce for the modern sector. Each producer optimizes their utility by
choosing among three activities: pure agricultural laborer, traditional-sector producer, or modern-sector

producer (i.e., contract farming). A producer’s utility will be maximal over these alternatives:

U* =max{Up,Urg, Usrs} )

where Up;, Urg, and Uy, ¢ denote maximal utility as a pure laborer, traditional-sector producer, or modern-

sector producer. The payoff in each activity is influenced by the producer’s land endowment, factor prices,

HSince § = (1 — Gini)/(1 + Gini), this is equivalent to parameterizing by the Gini coefficient of inequality. Since we have a
finite number of producers, we use a discrete analog to the continuous Lorenz curve used by EK. The Lorenz curve associated
with the Pareto distribution can be written as F(p) = 1 — (1 — p)® where 0 < § < 1 and p is the cumulative proportion of
ranked landowners. In the discrete case, let p; =4/N1 (i = 1,..., N1) and set the cumulative land share of producers that own
no more land than the i-th landowner to F(p;) = 1 — (1 — p;)®. Let h; be the land endowment of producer 4, sorted by size.
Since h;/H = F(p;) — F(p;—1) and p; — p;—1 = 1/N1, we have h;/H = (1— (i — 1)/N1)(S —-(1- i/N1)6. Distributional equality
(among the landed) arises when ¢ is unity.



and p.

Consider first the pure agricultural laborer, who derives income solely from wage labor and rents derived
from letting out any land owned. Accordingly, we have Y = wt,, + v h where w is the real wage, t,, is time
spent on wage labor, v is the real rental rate for land, and h is the amount of land owned. We normalize to
unity the total time available, so for the pure agricultural laborer we have t, = 1 —t,,. The pure agricultural
laborer can therefore be characterized by the maximand D+/1 — t,, + wt,, + vh, subject to a nonnegativity
constraint on t,,. When wages are too low to justify wage labor (i.e., w < D/2), we have a corner solution
at t¥, = 0. Otherwise, this problem has a unique maximizer, ¢}, = 1 — D?/(4w?). We can then substitute ¢,
into the maximand to find Up;.

The alternative to pure agricultural labor is agricultural production for sale either into the traditional
value chain or into the modern value chain. Given that the optimization problems facing the prospective
modern-sector and traditional-sector producers are quite similar, we discuss both problems in parallel. The
objective of each producer type is to maximize utility subject to time and working-capital constraints.'?
However, recalling section 2.2, modern-sector producers typically incur additional fixed costs in order to
receive the output price premium. Normalizing the output price in traditional spot markets to unity, let the
modern-sector producers receive the relative output price p > 1, which embodies the price premium. Further,
denote the fixed costs of participating in the modern (traditional) sector by Kp; (Kr), where Ky > K.

Both land and labor are required for agricultural production. Production technology for a single producer
is

0= AVh (1) (5)

where ¢ is producer output, A is a positive productivity parameter, h is operational landholdings, ¢; is own
labor applied to the operational landholdings, and L is hired labor. Taking into account possible land leasing

and labor market participation, real income is

Y =pg+w(ty — L) +v(h—h) - K (6)

where (p, K) = (p, Kj) for a modern-sector producer and (p, K) = (1, Kr) for a traditional-sector producer.

Recalling (3), the maximand for each producer type can therefore be written as follows:

U(trvy):D\/E+pq+w(tw_L)+v(ﬁ_h)_K (7)

12 As argued by EK, the constraints are directly influenced by two market “failures” ubiquitous in developing country agri-
culture: a labor market imperfection deriving from the incentive for hired labor to shirk, which necessitates supervision and
thereby influences time allocation; and a credit market imperfection deriving from the requirement of collateral, which means
that a producer’s access to working capital depends on the quantity of land owned. (See section 2.1.)



with the appropriate (traditional or modern sector) substitutions made for p and K.
Regarding the time constraint, in addition to the three uses of time defined above (¢, tp, and t,,), hired
labor requires time ¢4 for supervision. Naturally, all four uses of time must be nonnegative and all uses of a

producer’s time must sum to the total available (which is normalized to unity):
tr+tp +ty+ts=1 (8)

Supervision time is a function of hired labor: 5 = s; L + s9L?, where s; > 0 and 0 < s5 < 1.13 With respect
to the working capital constraint, working capital is required to hire labor and rent land. Collateral-based
access to working capital (B) depends linearly on the amount of land that a producer owns: B = ¢ + 6h,
where the parameters ¢ and 6 are nonnegative. The working capital constraint can then be written as
follows:

v(h—h)+w(L —t,) <B-K (9)

(with the appropriate substitution made for K depending on the production sector). All working-capital
outlays are incurred at the beginning of the production period.
Given the definition of the utility function and constraints, we can represent the producer’s constrained

optimization problem with the following Lagrangian:'

Lty th,tw, Ly b\ u) =DVt +pAy/h(ty + L) + w(ty — L) +v(h — h) — K

+ X [B—w(L —ty) —v(h—h) — K] (10)

+u[1—tr—th—tw—81L—82L2]

recalling that (p, K) = (p, Kas) for a modern-sector producer and (p, K) = (1, Kr) for a traditional-sector
producer. EK analyze this optimization problem in detail.'®
Let B = B + vh — K. EK show that the unique solution to (10) can be parameterized by B. Table

1 presents the EK solution for four possible modes of production, separated by three critical values of B.

13 Again, all functional forms are from EK. These functional forms embody standard assumptions. For example, the production
function is linear homogeneous, strictly concave, and twice-continuously differentiable. Similarly, the supervision function is
strictly convex and twice-continuously differentiable. The conventional justification for this strict convexity is that it ensures a
finite farm size despite the linear homogeneity of the production function. The restriction s; < 1 is needed for hired labor to
ever be profitable.

14For compactness, we suppress the nonnegativity constraints on the components of time use.

15 A producer cannot have t, = 0 and L = 0 since labor is an essential production input. Additionally, since the effective cost
of hired labor exceeds the market wage (i.e., it must be supervised), a producer who hires workers will not also provide wage
labor (i.e., t, and L cannot both be positive). However, it is possible that both t,, > 0 and t; > 0, since a producer may also
provide some wage labor.

EK assume that the capital constraint always binds on cultivators. This is a very strong assumption as it can force producers to
use unwanted working capital and can thereby impose suboptimally high levels of production or an inappropriate abandonment
of cultivation. While EK needed this assumption for tractability of their simulation approach, our agent-based approach allows
us to discard it.

10



Table 1: EK’s Capital Constrained Class Structure

Class Characteristics Working Capital (B)
LC (laborer-cultivator) ¢, >0,t, >0, L =0 0<B< B

SC (self-cultivator) tw=0,t, >0, L=0 B1 < B< By
SM (small capitalist) ty=0,t,>0,L>0 By < B < Bs
LG (large capitalist) tw=0,¢t,=0,L>0 B > B3

Being a pure laborer is always a reserve option, if cultivating is not preferable. As in EK, agents in our
model choose traditional-sector production over pure laboring if Ujg > Up;. Given that we also include a
modern sector, however, our agents will seek contractual farming arrangements if Uy, ¢ > max{Uj,,Ujg}-
If a producer wishes to participate in the modern sector but the procurer does not offer a contract, the

producer will choose the next best alternative.'®

3.3 Implementation and Baseline Parameterization

We implement our model as an agent-based computational model.!” Agent-based methods allow very general
representations of agent heterogeneity (Epstein and Axtell, 1996), and in our model producer-level variation
in landholdings is fundamental. An additional payoff to agent-based methods is that each agent can au-
tonomously optimize based on its particular state, constraints, and goals. In our model, producers have the
same goals (i.e., utility functions), but they face substantial constraint heterogeneity since land is used as

collateral. It is not obvious how one could correctly handle these constraints without agent-based methods.'®

Find general equilibrium

. Set up (Profit maximizing p Record ‘ @
(Distribute land) at market clear- ecord outcomes

ing factor prices)

Figure 1: Agent-Based Model Structure

Figure 1 presents an activity diagram of the steps followed to generate the model outcomes. This
algorithm is executed once for each considered value of ¢, from the least to the most equal distribution of

land.'® The core component of the set-up phase is the distribution of land to producers, based on §. Land

16This will not happen in our baseline parameterization, but it can happen if the procurer incurs contract-related transaction
costs from producer participation.

7There are many platforms available for agent-based modeling. Our implementation is in Python, a general-purpose, object-
oriented programming language. This choice is incidental to our research program, but Python has found wide use in scientific
programming (Langtangen, 2012). Our implementation depends on the gridworld module described by Isaac (2011), the numpy
numerical library for Python described by van der Walt, Colbert, and Varoquaux (2011), and the SciPy scientific programming
library for Python. See the source code in our supplementary online appendix.

18For example, EK achieve tractability in their simulations by assuming the working-capital constraint always binds, but it
does not.

91n the five-fold categorization of developing countries of Lipton (2009), the average Gini for the 19 countries in his most
unequal groups (groups I and II) can be computed as 0.82, using his data. Using the relationship that § = (1 — Gini)/(1 + Gini),
this is equivalent to a § value of approximately 0.10. We therefore select this as our initial (most unequal) § value. (The Gini
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ownership influences the factor demands and supplies of producers. Accordingly, we then find the general
equilibrium for the given §.2° In a general equilibrium, the relative procurement price (p) must maximize the
monopsonistic procurer’s profits at the current factor prices, while those factor prices must be the market
clearing prices when growers face that procurement price.2! Finally, we record the model outcomes associated
with the general equilibrium.

We track a variety of aggregate outcomes for producers, including welfare, output, the poverty rate, the
proportion in each activity, the proportion in each agricultural class, and the land use of each agricultural
class. The reported utility and output aggregates are means across producers. (This allows ready comparisons
with scenarios involving variations in the number of producers.) The poverty rate is constructed as the
proportion of producers with income below the EK poverty line. We also track outcomes for the procurer,
including the procurement price, output procured, and total profit.

Baseline parameter values are listed in Table 2, and most come directly from EK. One new parameter
is required by our use of agent-based methods: the number of producers (V). EK distributed producers
along a continuum, while in an agent-based implementation we must specify the population size. Two new
parameters are introduced when we add a modern value chain: the fixed costs of participation in the modern
sector (Ks), and the procurer’s sales price (P). Table 2 additionally includes a few derived values, which are
chosen to mimic EK to the extent possible. The number of landless is determined by pg, which corresponds
to the proportion landless in EK (see their Figure 2). Total arable land is similarly chosen to match their
relationship between landless producers, landholders, and the quantity of arable land.

EK did not calibrate their model, and it would be counterproductive for our project to attempt a full
calibration. Our goal is to examine whether adding a modern value chain alters the core predictions of the
EK model. Accordingly, we must adhere closely to the original model, so when possible our parameters are
taken directly from EK. Of course, this is not possible with our modern sector parameters. Our baseline
values for these parameters are roughly informed by empirical studies. For example, Michelson (2013)
conducted a supermarket supplier census in Nicaragua and found 244 current suppliers. We set N = 250
in the baseline. To cite another example, Schipmann and Qaim (2011) compared product prices across

retail outlets in Thailand and found that modern retailer prices ranged from 40 to 340 percent higher than

coefficients used in the calculation correspond to Lipton’s most recent data, which spans the years 1990-2005.)

20GSince our model implementation is agent-based, we are able to use the exact solution for each agent, including careful
attention to the constraints facing each agent and the possibility of corner solutions. Each agent computes its unconstrained
optimum. If its constraints bind, it computes a constrained optimum. We code analytical solutions to (10). The analyti-
cal solution for the working-capital-constrained large capitalist proves surprisingly complicated. See the source code in our
supplementary online appendix.

21For any given p, factor-market clearing is achieved when factor prices (v,w) produce zero excess demand in the land-rental
and wage-labor markets. As usual, we find this by numerical search. We use the fsolve function from SciPy’s optimize module.
SciPy is a widely-used scientific programming library for Python; fsolve is just a wrapper around MINPACK’s hybrd and hybrj
algorithms. Since p € (1, P), we use a bracketing-interval solver to find the procurer’s profit-maximizing p (with underlying
factor-market clearing). Source code is in our online supplementary appendix.
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Table 2: Baseline Parameterization

Parameter  Description Value
Parameters from EK

A production function productivity (A+/h (tn + L)) 5.0

D sub-utility of leisure (D /%) 0.1

$1, So labor-supervision costs (s1L + s3L?) 0.3, 0.01

o, 0 land-based working capital (¢ + 6h) 0.0, 1.0

Do proportion of agents without land 0.33

povertyline poverty line 1.3

K producer’s fixed cost (traditional sector) 0.50
New Parameters

N number of producers 250

Ky producer’s fixed costs (modern sector) 0.75

P sale price of procurer 3.5
Derived Values

Ny number of landless producers po- N

Ny number of land-owning producers N — Ny

H total arable land N1 /2 + Ny

traditional wet markets. We set P = 3.5 in our baseline parameterization.22 While our choices are intended
to be reasonable, we will show that our results are robust to deviations from our particular parameterization

by supplementing our baseline results with a sensitivity analysis.??

4 Results and Sensitivity Analysis

This section comprises two subsections. The first subsection discusses the results associated with our baseline
parameterization. The second subsection examines the sensitivity of our core results to changes in the baseline

parameters.

4.1 Baseline Results

In the absence of a modern value chain, our baseline model collapses to an agent-based version of the EK
model, and our simulation results are therefore very similar to theirs. For example, EK’s illustration of land-
use patterns (in their Figure 2) can be compared with the first subfigure in our Figure 2, which illustrates
producer outcomes in the absence of a modern sector. (When comparing figures, note that the range for

§ differs slightly.) Our figure is qualitatively very similar to the EK results.?* At high levels of inequality

228ee Minten and Reardon (2008) for further evidence on price differences between traditional and modern retailers. We did
not find empirical evidence to inform the baseline for K s, but it is constrained by two requirements: it must be greater than
K or we would not see a traditional sector, and it must not be so large that the modern sector disappears.

23Effectively we have two baseline parameterizations: one for the traditional economy (the EK model), and one (with three
additional parameters) for our modern economy. For compactness usually we refer to both as the baseline parameterization.

240ur agent-based results allow a slightly more prominent role for self-cultivators (SC), since our simulation includes a check
for whether or not the working capital constraint binds. The EK simulations were not agent-based. Instead, they assumed a
continuum of producers and generated simulation results by approximating the implied integrals. For reasons of tractability,
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(i.e., low §), large capitalist (LG) farming dominates—one thinks of South and Central America. But as the
distribution of landholdings becomes more equitable, small capitalist enterprises prevail—one thinks of East
and Southeast Asia. As is evident from our second subfigure in Figure 2, this pattern of land use is quite

robust to the introduction of the modern sector.

1 Traditional
\\ — SM
[} N
3 e N -- LG
2 S - sC
© ~ o
S LC
o . ARt -
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

land use

0.9 1.0

Figure 2: Agrarian Land Use (Traditional vs. Modern)
Land use, which is the proportion of land operated by each class, transitions from being
dominated by large capitalists to being dominated by small capitalists as the distribu-
tional parameter § increases. The traditional economy has no modern sector. Depicted
classes: laborer-cultivator (LC), self-cultivator (SC), small capitalist (SM), and large
capitalist (LG). Parametrization: baseline.

Figure 3 offers a different perspective on the effect of land redistribution on the class structure of the
resulting economy. (We find this result to be insensitive to the absence or presence of the modern sector,
so we only illustrate the latter case.) The figure is a stacked-bar chart, the height of which is the total
population of producers, so for a given ¢ the relative height of the colored bars illustrates the proportion
of producers in each class. We use darker colors for less capital-constrained production activities. White is
therefore the pure agricultural laborer (PL), light gray the laborer-cultivator (LC), gray the self-cultivator
(SC), dark gray the small capitalist (SM), and black the large capitalist (LG). Clearly the distribution of
land has large effects on the class structure of production. As the distribution becomes more egalitarian, the
producer population transitions from primarily laboring to primarily cultivating, and small capitalists come

to dominate production. Comparing Figures 2 and 3, we see that even when large capitalists dominate land

the EK simulations imposed continual binding of the working capital constraint. This can force overuse of working capital. In
our agent-based implementation, we allow each individual producer to determine whether or not the working capital constraint

is binding.
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use, they are a small proportion of all cultivators. In contrast, when small capitalists dominate land use,

they constitute the bulk of all cultivators.
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Figure 3: Class Structure and Land Distribution
As ¢ increases, producers transition from primarily laboring to primarily cultivating,
and small capitalists come to dominate production. Depicted classes: pure agricultural
laborer (PL), laborer-cultivator (LC), self-cultivator (SC), small capitalist (SM), and
large capitalist (LG). Parameterization: baseline.

Despite the small impact of the modern sector on land-use patterns and the class composition of agrarian
production, modern-sector participation is substantial. We document this in Figure 4. This figure is another
stacked-bar chart, displaying the proportion of producers in each sector for each level of §. We use white
bars for pure agricultural laborers, gray for cultivators that remain in the traditional sector, and dark gray
for cultivators that produce for the modern sector. As the land distribution grows more equal, more and

more producers can surmount the fixed cost of modern-sector participation, and the modern sector slowly

replaces the traditional sector.

[ modern
[ traditional
[ laborer

proportion of producers

o]
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

J

Figure 4: Distribution of Producers Across Sectors
Increases in distributional equality (§) are associated with fewer pure laborers and more
modern sector producers. Traditional sector production vanishes beyond intermediate
values of §. Parameterization: baseline.

EK emphasize that equilibrium in their model involves a misallocation of resources. While the optimal

land-to-labor ratios are constant for cultivators with B < Bj, they are strictly increasing for B > B;.?

25See Table 1. This is not true when the capital constraint does not bind, but EK assume that it always binds.
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Since cultivators set the marginal rate of substitution of land for labor equal to the relative effective factor
costs, increases in B (beyond Bj) induce a bias toward land use. This is because the effective cost of labor
increases as producers optimally consume less leisure (which raises the price of own labor) and hire more
wage labor (which raises the marginal supervision cost). Average land productivity therefore decreases in
B. The EK model thereby offers an explanation of the inverse farm-size/productivity relationship, discussed
above. For the same reasons, the model implies that land redistribution can raise total agricultural output
and improve average producer welfare.

Figure 5 illustrates our results for producer output, welfare, and poverty. The first subfigure illustrates
the outcomes for the traditional model, which has no modern sector. The second subfigure illustrates the
outcomes for our new model, which includes a modern sector. (In both cases, we use the baseline parameter
values, discarding the modern-sector parameters when simulating the traditional model.) The presence of the
modern sector has barely detectable effects on output and poverty, but it has substantial effects on average
producer welfare. While the introduction of the modern sector increases producer welfare for every value
of §, the relationship between welfare and § is distinctly non-monotonic. This relationship is of particular
interest as a counterpoint to EK, who find that “an increase in the distributional parameter ¢ ...causes
an increase in social welfare ...a direct consequence of the inverse relationship between farm size and land
productivity” (Eswaran and Kotwal, 1986, p. 494).

Intuitively, the welfare premium associated with the introduction of the modern sector naturally increases
as participation in that sector increases. Referencing Figure 4, we see that participation peaks at § ~ 0.4,
about the same as the welfare peak. For a given producer to incur the cost of participating in the modern
sector, output must be sufficiently large for the modern sector premium to offset those costs. High levels
of inequality (i.e., low values of §) are associated with the existence of few farms large enough to justify
participation in the modern sector. Interestingly, however, when land inequality falls further (i.e., at higher
values of 0) producer welfare declines. This is because, when many producers have shifted to the modern
sector at higher levels of land equality, the procurer can use a lower p to draw production to the modern
sector. Below we show that p is indeed decreasing in & for 6 > 0.4, and that this result is robust to
large parameter variations. From a policy perspective, this suggests that land redistribution can become
counterproductive beyond a certain point.

Finally, Figure 6 illustrates the baseline procurer outcomes. It is evident that the optimal procurement
price (p) peaks at § ~ 0.4. As mentioned above, this coincides with peak participation in the modern sector,
after which point the procurer uses a lower procurement price to draw production to the modern sector.
Even when rising § drives p down, it continues to drive up procurer purchases (@ s) and profit (II), until they

eventually level off. The monotonic relationship between I and § contrasts starkly with the non-monotonic
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Figure 5: Producer Outcomes (Traditional vs. Modern)
A non-monotonic relationship between the distributional parameter ¢ and producer wel-
fare arises with the addition of the modern sector. Parameterization: baseline.

2000

500

Figure 6: Aggregate Procurer Outcomes
Variations in distributional equality (&) affect the procurer’s optimal procurement price
(p) and thereby procurer purchases (Qas) and profits (IT). Purchases and profits are
increasing in §, especially at low ¢.
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equity-welfare relationship associated with the producer outcomes. These results are robust to changes in
the parameter values. In particular, we find qualitatively similar results for large changes in the procurer’s

output price (P). (See the online supplementary appendix for details.)

4.2 Sensitivity Analysis

We have found that the core prediction of the EK model is overturned when adding a modern sector to
the model. To this point, however, we have shown that only for the baseline parameterization. While it is
interesting to find a specific parameter set that overturns their prediction, a robust result would be much
more interesting. We therefore proceed to sensitivity analysis. (See our online supplementary appendix for
additional detail.) Recall that our new model of agrarian production requires three new parameters: N, P,
and Kj;. Also recall that our goal is to show that—on its own—the emergence of a modern sector undermines
EK’s core prediction. While we must then use EK’s parameters to the extent possible, a sensitivity analysis
for the new parameters is desirable.

First, consider the number of producers (V). The EK model worked with a continuum of agents, but
our agent-based implementation must specify the number of agents. However, we scale the available land
so that land per producer matches the EK specification. (See Table 2.) This ensures that our results are
comparable over a wide range of values for N. We consider large variations in the number of producers (i.e.,
halving or doubling). Here we simply state that, as expected, these variations have negligible effects. (See
our supplementary online appendix for more details.)

Next, consider the procurer’s sales price (P). Halving and doubling this price relative to the baseline
naturally has large effects on procurer profitability. A higher external price also encourages the procurer to
bid for more output, so the sales price can have important effects on producer welfare. This is illustrated in
Figure 7. At the low sales price depicted in the first subfigure, we can barely perceive the non-monotonic
equity-welfare relationship, but it remains. At the high sales price depicted in the second subfigure, it is
prominent. Since the procurer can offer little price premium when the sales price is low, these results are
also expected.

Finally, we consider the cost of modern-sector participation (Kjs). Recalling (6), we expect to observe
that K is a key determinant of the desirability of modern-sector participation. One way to illustrate this
sensitivity is offered in Figure 8, which varies Kj; from a low of 0.60 to a high of 1.50. As expected, an
increase in Kj; produces an decrease in modern-sector participation. With high enough Kj;, one can drive
out the modern sector altogether. Conversely, as K, falls toward K, eventually all cultivators will prefer

to produce for the modern sector.
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Figure 7: Welfare Effects of Changing P
At a low procurer sales price (P), the non-monotonic equity-welfare relationship re-
mains, but is barely detectable. At a high procurer sales price, the relationship is more
pronounced.
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Figure 8: Producer Sectors (Low vs. High Participation Costs)
Higher participation costs (K)s) diminish modern-sector participation, especially when
the land distribution is very unequal (low §). The proportion of pure laborers is unaf-
fected by participation costs.
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Figure 9: Kj; and Producer Welfare
The relationship between modern-sector participation costs (Kj;) and mean producer
welfare is complex. Even with substantial variation in Kp;, however, no monotonic
equity-welfare relationship is recovered.
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We might expect that higher participation costs will not only lower modern-sector participation, but
will also imply lower welfare payoffs to producers. However, the situation is more complicated: a lower
participation cost is unambiguously better for any single producer, ceteris paribus, but participation costs
have general equilibrium effects. Figure 8 showed us that participation in the modern sector falls as K, rises.
However, an increase in K); works against the monopsony power of the procurer, as higher p is required to
draw forth the same level of production. This provides a gain to intramarginal producers. As illustrated in

Figure 9, the gain may be large enough to raise average producer welfare.

5 Summary and Conclusion

Empirical evidence suggests that smaller-scale producers have historically possessed a productivity advan-
tage in labor-abundant agrarian economies. In this context, researchers have argued that redistributive land
reform may not only improve agricultural productivity, but also increase equity and reduce poverty. Dietary
diversification, foreign direct investment, and changing technology have, however, recently induced funda-
mental changes in agricultural value chains in developing countries. Furthermore, the associated development
of modern procurement systems has led to the imposition of quality standards that credit-constrained, small-
scale producers typically find difficult to meet. This radical restructuring of global agri-food systems raises
questions as to whether redistributive measures continue to possess welfare-enhancing potential.

In recognition of the persistent growth of high-value markets, we re-examine the production and wel-
fare consequences of the distribution of agricultural landholdings. To this end, we extend the influential
theoretical work of Eswaran and Kotwal (1986). The EK model famously predicts that a more egalitarian
distribution of landholdings will generate increases in aggregate output and welfare. However, the model has
a substantive shortcoming: the absence of a modernized agricultural value chain. Our new model of agrarian
production includes a modern sector and re-examines the implications of more egalitarian distributions of
agricultural landholdings. The inverse farm-size/productivity relationship persists in our model, but EK’s
core prediction is undermined. In our model, the response of producer welfare to more egalitarian agricul-
tural landholdings is non-monotonic. Past a certain point, a more egalitarian distribution of landholdings
diminishes producer welfare. Contrary to the famous EK result, we predict that redistributive measures can
indeed become counterproductive.

Our result is the product of scale-biased participation in modern value chains. For a given producer
to incur the additional costs of participating in the modern sector, output must be sufficiently large for
the associated price premium to offset those costs. High levels of inequality are therefore associated with

the existence of few producers large enough to justify participation in the modern sector. When the land
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distribution is more egalitarian, modern-sector participation is then naturally higher. Interestingly, with
more modern-sector participants, the procurer’s profit-maximizing procurement price can decline, lowering
the welfare of intramarginal producers. The welfare gain from modern-sector production thus peaks at
intermediate levels of land equality, producing a non-monotonic equity-welfare relationship.

A single contradictory scenario is enough to raise questions about the appropriateness of relying on the
EK prediction in policy discussions, but we provide more than that. Our sensitivity analysis shows that our
result is quite robust. Accordingly, we claim to have overturned the EK prediction.

We believe our new model of agrarian production advances the understanding of developing agrarian
economies. Nevertheless, it has important limitations: it is a static general-equilibrium model, and corre-
spondingly it assumes perfect contractual compliance. Barrett et al. (2012) suggest numerous considerations
for a more detailed treatment of contracting between procurers and producers. Informational asymmetries
between contracting parties, and costly contractual enforcement create space for breach of contract. A pro-
curer may delay or default on the final payment, inappropriately reject product, or lower the procurement
price post-harvest. Producers may refrain from adhering to the agreed upon production schedule, engage
in side-selling, or fail to make timely product deliveries of sufficient quantity and quality. Contractual
breakdown has clear short-run consequences (e.g., payment default). Additionally, there are many long-run
consequences (e.g., delisting underperforming producers). Handling these appropriately may require the
development of an apt repeated game. Such considerations may further qualify our results, and we hope to

explore them in future research.
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A Supplement to Sensitivity Analyses

This section provides some additional illustrative graphs to supplement the sensitivity analysis in the paper.



A.1 Class Participation

Figure 3 in the paper showed the distribution of sector participation when there is a modern sector. In
Figure 10, we additionally show the distribution prior to the introduction of the modern sector (i.e., in the

EK model). The qualitative behavior is quite similar.
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Figure 10: Class Structure and Land Distribution (No Modern Sector)



A.2 Sector Participation

Figure 4 in the paper showed the distribution of sector participation when there is a modern sector. In
Figure 11, we additionally show the distribution prior to the introduction of the modern sector. The pattern
of choice between cultivating or laboring remains very similar. (Naturally, there are now no modern-sector

agents; the legend is retained just to match the original figure.)
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Figure 11: Distribution of Producers Across Sectors (No Modern Sector)



A.3 Sensitivity to Number of Agents

Our core result is Figure 5. The simulation results are very robust to the number of agents. The baseline

number of agents is 250. Here we create comparable figures for variations in the number of agents. We

always find our core result, the non-monotonic equity-welfare relationship, with a very slight

shift to the

right of the peak when number of agents increases.
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A.4 ‘Welfare Effects of P

Here we supplement Figure 7 of the paper by looking at additional values of the producer’s output price (P).
At low external prices, the non-monotonic equity-welfare relationship is barely distinguishable. At higher

prices, it manifests clearly.
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A.5 Output and Procurement Price Effects of P

The procurer’s sales price naturally has large effects on procurer profitability. Figure 20 illustrates somewhat
less obvious effects: the response of the procurement price offered by the procurer and the resulting changes
in the amount of output destined for the modern sector. We illustrate these outcomes for very large changes
in P: halving and doubling the price relative to the baseline value of 3.50. Naturally we always observe
1 < p < P. We see that much of the modern sector’s potential to attract production has already been
exhausted at the baseline procurer sales price, although a substantial response remains at moderate levels
of land inequality. The lower price (P = 1.75) is so close to the price in the traditional sector that the
procurer has little maneuvering room. As a result, the modern sector attracts less participation, and Qs is

correspondingly low.
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Figure 20: Output and Procurement Price Effects of P
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A.6 Sensitivity to K,

In Figure 9 of the paper, we found that the relationship between modern-sector participation costs (K ;) and
producer welfare is complex. Even with substantial variation in Kj;, however, no monotonic equity-welfare

relationship is recovered.
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B Baseline Parameterization

; File: baseline.ini

; This file specifies the baseline parameters for the simulation in

; "Modern Value Chains and the Organization of Agrarian Production”

; and thus repeats the information in the Table in the paper.

; Here are the EK params for reference (listed as deviations from a

; Figure 2 baseline, as specified in EK’s notes to individual figures):
; Baseline:

; Fig 1: Fig 2 but H=0.5 N0=0.0 (note: ¢ not specified)

; Fig 2: A=5,b=0.1,¢=0.01,D=0.1,K=0.5,theta=1,phi=0,H=1,N0=0.5,N1=1

; Fig 3: Fig2 plus Yp=1.3

; Fig 4: Fig2

; Fig 5: Fig 2 but b=0.3,¢=0.1(typo?) ,K=0.2,N0=0,N1=1,delta=0.1,Yp=1.0
; Changes in notation

; Us EK

; KT K

; povertyline Yp

; pO NO/(NO+N1)
;osl b

;82 ¢

; Their land is 1 unit with no relative units provided.

; Their labor force is also 1 unit with no relative units provided.

; We match that by scaling H to n_agents (via N1 and NO).

; For our baseline model, we need two additional parameters: KM and PF
; (plus a specification of the number of agents, n_agents).

; A couple of the parameters below are irrelevant for the current

; version of the model but are retained for those who want to explore
; extensions. (See the parameter notes below.)

A]
type : float

value : 5.0

source : EK (1986, Figure 2, p.493)

description : Productivity parameter on Cobb—Douglas production function
[s1]

type : float
value : 0.30
source : EK (1986, Figure 2, p.493)

description : parameter on first —order aspect of supervision function
note : this is EK’s b parameter
[s2]

type : float
value : 0.01
source : EK (1986, Figure 2, p.493)

description : parameter on second—order aspect of supervision function
note : this is EK’s ¢ parameter
[D]

type : float

value : 0.10

source : EK (1986, Figure 2, p.493)

description : parameter on sub—utility (of leisure) function
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[cdistscale]
type : float

value : 0.0
description : scales cost per unit of distance traveled
for agroindustrial firm relative to the gridsize
note : no costs in baseline
[KF]
type : float
value : 0.0
description : fixed costs (per grower) for the agroindustrial procurer
[KM]

type : float
value : 0.75

description : grower fixed cost in modern value chain
note : 50pct higher than KT

KT

type : float

value : 0.5

source : EK (1986, Figure 2, p.493)

description : producer fixed cost in traditional value chain
note : this is EK’s K

[PF]

type : float

value : 3.5

description : sale price of procurer

[phi]

type : float

value : 0.0

source : EK (1986, Figure 2, p.493)

description : Intercept of working capital function
[povertyline |

type : float

value : 1.3

description : Poverty line

source : EK (1986, Figure 3, p.494)
note : this is EK’s Yp parameter
[pO]

type : float

value : 0.33

source : EK (1986, Figure 2, p.493)

description : proportion of landless agents

note : equals EK’s NO/(NO+N1)

[theta]

type : float

value : 1.0

source : EK (1986, Figure 2, p.493)

description : parameter on land owned in working capital function
note: a larger theta means a looser capital constraint
[n_agents]

type : int

value : 250

description : Number of agents

note : EK’s theoretical model has a continuum of workers on an interval;
an agent—based implementation needs a finite number of agents.
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(See the sensitivity analysis in the paper.)

[n_locations]
type int
value : 10
description

the number of locations randomly chosen

for the procurer to consider when deciding where to locate

note this parameter ignored if cdistscale is 0,
as it is in the baseline simulation
[n_replicates]
value : 1
type int
description the number of replicates for this scenario
note the baseline simulation is deterministic

so replicates aren’t needed;

reset this parameter

for extensions with important randomness.

[rndseed |

value 314

type int

description

note each replicate is
[grid_side]

type tuple

value computed
description

note

[productionshocks]

type bool

value False
description set to True to

Not currently used because
[dpp]

type int

value : 1

description the amount (in
each iteration; determines

[extrasearch |

type bool

value False

description
improve discovery of global

assigned

subject producer productivity to stochastic

it has very

initial seed for random number generation
its a unique seed based on this

shape of the rectangular grid (the land)
supply value to override computed value

little effect on the results.

percent) to increment delta_pct
the data (and plot) density

max in

17
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C Source Code

77?7 File: distribution .py
Provides Python 2.7 source code for classes used in:
Modern Value Chains and the Organization of Agrarian Production

Classes

Agtinfo : a namedtuple holding core agent attributes

MktInfo : a namedtuple holding a basic market summary

Producer : a class for the specification of agent attributes and behavior
Procurer : a class for the specification of firm attributes and behavior
World : a class for the creation, coordination, and documentation of agents

GUI : a class for GUI set—up (only if desired; not needed to run model)
Dependencies

numpy : http://numpy.scipy.org/

scipy : http://www.scipy.org/

gridworld : http://code.google.com/p/econpy/source/browse/trunk/abm/
(in the baseline, this is just for some GUI conveniences;
in extensions, provides a topology)

choose : included

parameters : included

from __future__ import division

#standard library imports:

import itertools , logging , math

from collections import Counter, deque, namedtuple, defaultdict

#commonly used scientific libraries:

import numpy as np

from scipy.optimize import fminbound, fsolve

from scipy.optimize import minpack #for trapping minpack. error

import matplotlib.pyplot as plt

#other imports:

import gridworld

import choose

from utilities import x

__version__. = 72.1.37

global constants

(these are largely for reporting convenience)

macro—level wvariables (see ‘log-macrodata ¢ for definitions)
macro_datanames = tuple(”””

delta_pct n_agents KF PF

KM cdistscale theta

v w rho

H hsumPL hsumLC hsumSC hsumSM hsumLG

Qtotal Qav QMtotal QMav

Ytotal Yav YMtotal YMav

Utotal Uav UMtotal UMav Ulandless

p-qmodern p_ymodern Pi

n_modern n_poor n._contract

n_class0 n_classl n_class2 n_class3 n_class4
n_sector) n_sectorl n_sector2

n_frenege n_prenege n_accept n_honor
p-modern p_poor p_contract p_gqmodern
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hd_total twd_total thd_total Ld_total tsd_total
gini_y gini_u
”””.Split())

agent—level wvariables
micro_-datanames = tuple(”””

delta_pct pclass sector

hbar h.d h th th.d tw tw.d L.d L tr tr_d q
is_.poor U.d U Y.d Y contract

NNy Spllt ())

contract—related bit flags

CONTRACTS = dict (
offer=(1<<0),
accept=(1<<1),
fhonor=(1<<2),
frenege=(1<<3),
prenege=(1<<4),

)

classes

AgtInfo = namedtuple(’AgtInfo’, ’hbar bbar A’)
MktInfo = namedtuple(’MktInfo’, ’delta_pct, v, w, rho, growers’)

class Producer(gridworld.Agent):
?7” Provides a producing agent
which may be landless or landed, laborer or capitalist.
Inheriting from ‘gridworld.Agent‘ is not important

for the baseline model but provides GUI convenience.
999

def initialize (self):
7?77 Return None; initalize the producer attributes.
:side—effects: set hbar, bar; set A (as final value);
change state of prng (if ‘productionshocks‘ is True).

:note: ‘initialize ¢ is called by ‘gridworld.Agent.__init__°*

‘¢

#the first two attributes are reset each delta by ‘set_landholdings
self .hbar = 0.0 #quantity of land owned

self .bbar = 0.0 #land based credit

params = self.params #the model parameters (not agent specific)

A = params[’A’]

#extension: allow production shocks

if params[’productionshocks’]: #False in baseline

prng = params|’'prng’| #see parameters.py
A %= prng.lognormvariate (0,0.01)
self A=A

#arbitrary display conveniences (GUI only)
if self.world.has_gui:
self .display (fillcolor="white’, shape=’square’)

def calc_info(self, v, w, rho, has_contract):
77” Return dict: agent’s demands and supplies ,
pclass , sector, factor demands, and welfare.
:calls: ‘choose‘ (which is called nowhere else)
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:side—effects: none (does NOT set prdr info!)
Parameters

v (float) : rent of land (positive float)
w (float) : wage of labor (positive float)

rho (float) : price premium of modern sector (positive float);
must be in [1,PF]
growers (list [Producer]|) : producers that "have contracts”
loc (int ,int) : proposed location of firm; default is ‘self.position
has_contract (bool) : True if agent offered contract
Note

The keys of the returned dict are:

sector , pclass ,tr_d ,tw.d,th.d,L.d,h.d,q.d,Y.d,lmda,U.d

(See the ‘choose.py‘ module documentation for definitions.)

assert (w>0 and v>0), "bad factor prices: v={}, w={}”.format(v,w)
params = self.params #the model params (not agent specific)

KM, KT = params|[ ’KM’], params| KT’]

#K=0 for pure laborer; see below

assert (rho>=l and rho <= params|[’PF’]), ”bad rho: {}”.format(rho)

#get the info (dict) for each possible choice

agent = self.base_info #read—only, just to make a point (and add safety)

lab = choose.pure_laborer (agent, v, w, params)
trad = choose.cultivate (agent, params|[’KT’], v, w, 1.0, params) #trad —> K=KT,rho=1.0
if has_contract and rho>1: # Growers under contract, full range of options
mod = choose.cultivate (agent, params[’KM’], v, w, rho, params) #K=KM, rho=rho
sectors = (lab, trad, mod)
else: # Growers not under contract; ’'mod’ is mot available

sectors = (lab, trad)
#choose sector to mazimize utility , with implied fixed costs
info = max(sectors, key=lambda s: s[’U.d’])

info[’sector’] = sectors.index(info)
assert ”"contract” mnot in info
info[’contract’] = 0

if has_contract:
info[’contract

|= CONTRACTS[ ’offer ']

']
if info[’sector’] = O:
assert info['K'] = 0
elif info[’sector’] = 1:
assert info[’K’] = KT
elif info[’sector’] = 2:
assert info[’'K’] = KM
assert has_contract
info [ ’contract’] |= CONTRACIS|’ accept ’]
else:
raise ValueError (”unknown sector”.format(info[’sector’]))
info[’vwrho’] = (v, w, rho)
info [ ’hbar’] = agent.hbar #only needed for microdata logging
#next we record an arbitrary value of Imda for those who choose ‘lab ¢
if info is lab: # Imda does not exist for laborers; arbitrary replacement
info[’lmda’] = 0

return info
@property

def base_info (self):
77”7 Return AgtInfo, the core characteristics of this agent,
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given the land allocation.
:called by: ‘choose*
:note: this provides all the agent info needed by ‘choose

99999

return AgtInfo(hbar=self.hbar, bbar=self.bbar, A=self.A)

3

def qYU(self , info):

777 Return 3—tuple of float ,

the producer’s output, income, and utility.

:note: info must include ex post values
(which allow for short—side constraints),
provided by ‘updated_producer_infos ¢

hbar = self.hbar

assert hbar = info [ hbar’| #id’s the producer

#compute ¢

h = info[’h’]

L = info['L’]

th = info [’ th’]

#:note: A may be individualized (but not in baseline)

q = self.A x math.sqrt(h * (th + L))

#compute Y

v, w, rho = info [ ’vwrho’]
yv = v % (hbar — info[’h’])
yw = w % (info[’tw’] — info[’L’])

if bool(info[’contract’] & CONTRACTS[ ’accept’]):
assert bool(info[’contract’] & CONTRACIS[’ offer ’])
price = rho

else:
price = 1.0

yq = price *x q

Y =yq 4+ yv + yw — info['K’] #see ‘calc_info

D = self.params[’D’]

U=Y + D % math.sqrt(info [ tr’])

return (q, Y, U)

¢

### read—only properties ###

@property
def params(self):
return self.world.params

#minor safety features

@property
def info (self):
raise NotlmplementedError

# GUI stuff

def redraw (self, info):
77?”Return None. Reset agent display attributes.
Side effects: GUI only.

99999

if not self.world.has_gui:

return
sector = info[’sector’]
contract = info [’ ’contract’]
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fillcolor = (’#FFFFF’ , "#EEEEFF’ |, ’#0000FF’ ) [sector] #lab, trd, mod = 0, 1,
if sector==2 and (CONTRACTS|’frenege’] & contract):

fillcolor = ’#FF0000’ #color freneged (color choice? chk)
size = (self.hbar + 0.01)*%(1/6.0) #display size reflects land owndership
self.display (fillcolor=fillcolor , shape=’square’, shapesize=(size, size))

class Procurer(gridworld.Agent):
7?” Provides a modern—sector firm that can contract with growers.
Inheriting from ‘gridworld.Agent‘ is not important

for
79N

def

def

def

the baseline model but provides GUI convenience.

initialize (self):
77”Return None. Set miscellaneous initial values.
:note: this method is called by gridworld.Agent. __init_._
27NN
self .reset ()
#for GUI user convenience, make firm gray wuntil it chooses a location
if self.world.has_gui:
self.display (fillcolor="gray’, shape=’circle’, shapesize=(1,1))

reset (self):
77” Return None.

:side—effects: Reset growers attributes to initial state.
99999

self._growers = None
self . _honored = None
self. _freneged = None
self.rho =1
self .Pi =0

choose_location (self, v, w):

77”7 Return None. Set position to profit maximizing location.
Side effects: only if ‘cdistscale * > 0, in which chase

prng state changes (via‘random_locations ¢) if ‘cdistscale * > 0
and via ‘rho_epi‘ xifx ‘extrasearch ‘ is True.

:note: irrelevant to baseline model

Parameters
v : float

rent of land
w : float

wage of labor

99999

world = self.world

params = self.params

if (params|’cdistscale’] = 0):
msg = ””” cdistscale==0;
distance doesn’t matter so location doesn’t matter;
we will leave firm at its initial location.”””
world . logger . info (msg)
return self.position

print (”It can take a while for the procurer to choose a location ...7)
#random possible firm locations
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n_locations = params|[’n_locations’]
#get a random set of unoccupied firm locations

locations = world.random _locations(n_locations , exclude=True, prng=params]|’prng’])
loc2rho = dict () #map of locations to best rho (given v,w)
loc2epi = dict () #map of locations to maz profits (given v,w)
for loc in locations: #find best rho for each location
reg = self.rho_epi(v, w, loc=loc)
loc2rho [loc] = reg[’rho’]
loc2epi[loc] = reg[’epi’]

print (” Location chosen.”)
return max(loc2epi, key=loc2epi.get) #choose best position

def profitvwgi(self, rho):
7?7” Return (float , float ,float ,list [Producer], dict [Producer,dict]):
profit , v, w, growers, infodicts. Finds the best set
of growers for this ‘rho‘, and also the
associated factor prices.
:called by: ‘findeq-modern‘ (repeatedly)
:todo: switch growers to tuple?
v,w = self.world.clear_factor_markets_traditional () #just to initialize
infodict = self.world. producer_infos (v=v,w=w,rho=rho, growers=())
best = (0,v,w,(),infodict)
if (rho <=1 or rho >= self.params[’PF’]):
return best

B
growers = self.world.producers #start with all
grower_list = [] #list of lists

improved = False

ct =0

while (ct <100): #two or three tries is typical
if (growers in grower_list):
print ”"grower set determined in {} tries”.format(ct)

break
grower_list .append(growers)
v,w = self.world.clear_factor_markets (rho, growers)

#get profits when all ‘growers‘ contracts fhonored!

# along with the preferred growers at v,w, rho (out of all producers)
#note: do NOT use ‘growers_and_profit ‘ instead!

gp = self.profit02 (v, w, rho, growers)

profit = gp[’'profit’] #profit when xallx accepted contracts fhonored
infodict = gp[’infodict ]

if profit > best[0]:

best = (profit ,v,w,growers,infodict)
if ct > 0:
improved = True #improvement over offer to all

#now we update to the growers that were preferred at v,w,rho
#(but this may then lead to factor price changes, next iter)
growers = gp|[ 'growers’]
ct +=1

if (not improved):
#but mnot every producer will end up modern, of course
#so let’s figure out who the growers really are

growers = best|[—2]

if (growers =— self.world.producers): #offering to everyone is optimal
profit_best , v_best, w_best, g_best, i_best = best
growers = tuple(p for (p,i) in i_best.items() if i[’sector’|==2)

assert np.allclose(profit_best
,self .profit02 (v_best ,w_best ,rho,growers)[ profit’]
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)
best = (profit_best, v_best, w_best, growers, i_best)
else:
assert growers==() #we never saw positive profits at this rho
#chk remove the following slightly expensive test? (profitvwg: called in loop...)
for grower in growers:

assert infodict[grower][ ’sector’] = 2
#print "profitvwgi:”, best[:3], rho, len(best[3])
msg = 777 At rho={}, we find the best profit={} after {} tries.”””

print msg.format(rho, best[0], ct)
return best

def profit02(self, v, w, rho, growers, loc=None):
7?77 Return dict, mapping (when all ‘growers‘ can successfully opt in)
"profit’—>the procurer’s profit (at ‘loc ‘) &
"growers’—>the procurer’s profitable growers out of xallx producers
:note: profit when all ‘growers‘ have their contracts honored,
so the returned level of profits can be negative.
:note: Profits are ”"expected” only in the sense of expecting
‘v¢ and ‘w‘ unchanged.
:note: it is sensible to call this function
ONLY when v, w, are market clearing values for rho, growers
:note: procurer honors contracts (procurer will buys from all ‘growers ¢);
contrast with ‘growers_and_profit *
:called —by: ‘profitvwgi ¢
:side—effects: none

Parameters

v (float) : rent of land (positive float)
w (float) : wage of labor (positive float)

rho (float) : price premium of modern sector (positive float)
growers (list [Producer]|) : producers that "have contracts”
loc (int,int) : proposed location of firm; default is ‘self.position

9999 9

if not (v>0 and w>0): #precondition
raise ValueError(”factor prices shd be positive”)
params = self.params
PF, KF = params|[’PF’], params[ KF’]
if (rho <=1): #no growers will accept this
return dict (profit=0, growers=(), infodict=None)

g e

if loc is None: #:note: location does mot matter in the paper simulations
loc = self.position

world = self._world

cdist , producers = world.cdist, world.producers

if cdist > 0:
distances = self._world.producer_distances(loc)

#get producer info when ALL producers have modern option :

infodict = world. producer_infos(v=v, w=w, rho=rho, growers=producers)

new_growers = list () #the desirable (profitable) producers
total_profit = 0
for prdr in producers: #retain order by wusing producer list
info = infodict [prdr]
contract = info[’contract’]
assert (contract & CONTRACTS[’offer’]) #every prdr has an offer
#determine the actual profit from the existing contracts
if info[’sector’] = 2: #if prdr wd accept an offer (ow no profit)
assert (contract & CONTRACIS[’accept’])
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def

revenue = (PF-rho) * info[’q.d’]
cost = KF
if (cdist > 0): #no distance costs in baseline
cost += cdist * distances [prdr]
profit = revenue — cost
#determine if the procurer would like to contract with prdr
if (profit > 0):
new_growers .append (prdr) #a desired grower at v,w,rho
#this grower would accept a contract offer; check profitability
if prdr in growers: #a grower (producer with a contract)
total_profit += profit #all contracts honored
return dict(profit=total_profit , growers=new_growers, infodict=infodict)

rho_epi(self, v, w, loc=None):
7?77 Return dict ,
"rho’—>the best rho,
‘epi’ —> expected profit
"growers’—>growers at (v,w,rho),
Given the specified location (default: current position),
where ’'best’ means greatest expected profit,
Note: when we consider firm location & positive distance costs,
this is called repeatedly with *xex antex ‘v‘ and ‘w¢
(i.e., prior to modern sector) to determine optimal location.
Side effect: prng state, if extrasearch used;
see baseline.ini for details.

Parameters
v : float

rent of land, should be positive
w : float

wage of labor, should be positive
loc : 2—tuple of int

procurer location for computation; optional
if (v< 0 or w< 0): raise ValueError(”bad factor prices”)
if loc is None:

loc = self.position
params = self.params
PF = params[ PF’] #world price
profite = self.profite #declare local wvar —> avoid repeated attribute access
f2min = lambda p: —profite (v=v, w=w, rho=p, loc=loc)

#offering rho<l contracts pointless; rho>PF contracts counterproductive
results = fminbound (f2min, 1.0, PF, xtol=1le—08,full_output=True, disp=0)

rho = results [0] #best premium price for procurer
EPi = —results [1] #ezpected profit
if __debug__:
msg = "Best rho={} given v={} and w={} (using fminbound).”

print msg.format (rho,v,w)
if rho > PF:

msg = "Bad fminbound result: rho={}".format(rho)
raise ValueError (msg)

#for more deterministic results, extrasearch turned off in the baseline

extrasearch = self.params[’extrasearch’]
if extrasearch: #search mnearby for better values
msg = "rho={} —> profits={}; trying to improve on this...”

world . logger . info (msg.format (rho ,EPi))
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rvals = [rho]

pvals = [EPi]
prng = params| ’'prang’]
for _ in range(25):

#repeatedly try a random wvalue nearby
rtemp = 1 + prng.lognormvariate (math.log(rho—1), 0.5)

ptemp = profite (v, w, rtemp, loc)
if ptemp > EPi:
EPi = ptemp
rho = rtemp
msg = ”Improved by random search\n\t{}->{}”.format (rtemp ,ptemp)

world . logger . info (msg)
#try to do even better with a fitted wvalue
if ptemp > 0: #collect wvalues for a polynomial fit effort
rvals .append (rtemp)
pvals.append (ptemp)
if len(rvals) > 2:
a,b,c=np.polyfit (rvals ,h pvals,h2)

if (a < 0):
rtemp = —b/(2xa)
ptemp = profite(v, w, rtemp, loc)

if ptemp > EPi:
EPi = ptemp
rho = rtemp
msg = ”Improved by structured search\n\t{}->{}”
msg = msg.format (rtemp ,ptemp)
rvals .append (rtemp)
pvals.append (ptemp)
world . logger . info (msg)
We may need a final function call!
Why? The chosen rho returned need not be identical to the last rho passed by fminbound,
so choose again (surprisingly , even w/o extrasearch, this can matter)
79N
assert EPi = profite(v, w, rho, loc)
gp = self.growers_and_profit (v, w, rho, loc=loc)
assert np.allclose (EPi, gp[’profit’])
return dict(rho=rho, epi=EPi, growers=gp[’ growers’])

def profite(self, v, w, rho, loc=None):
7?77 Return float , the procurer’s maximum expected profit ,
given its location. (Expected only in the sense of expecting
‘v and ‘w‘ unchanged after the contracts are offered,
which will be true in the general equilibrium.

:side—effects: none
Parameters: see ‘growers_and_profit ¢

:note: During setup, this may be called repeatedly

by ‘rho_epi‘ with sprovisionalx firm locations.
gp = self.growers_and_profit (v, w, rho, loc=loc)
return gp[ ' profit’]

def growers_and_profit(self, v, w, rho, loc=None):
7?77 Return dict , mapping (when xallx producers can opt in)
"profit’—>the procurer’s maximum expected profit (at ‘loc ‘) &
"growers’—>the procurer’s chosen (i.e., profitable) growers
to generate this profit level.
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Profits are "expected” only in the sense of expecting
‘v and ‘w‘ unchanged after the contracts are offered,
which will be true in the general equilibrium.
:note: a set of contracts is NOT imposed;

contrast with ‘profit02 °

:side—effects: none
Parameters

v (float) : rent of land (positive float)
w (float) : wage of labor (positive float)

rho (float) : price premium of modern sector (positive float)
growers (list [Producer]) : producers that "have contracts”

loc (int,int) : proposed location of firm; default is ‘self.position
Notes

Called by ‘rho_epi‘ which may be called *repeatedlyx
with xprovisionalx firm locations.
if not (v>0 and w>0): #precondition

raise ValueError(”factor prices shd be positive”)
params = self.params
PF, KF = params|[’PF’], params[ KF’]
if (rho <=1 or rho >= PF):

return dict(growers=(), profit=0)

g e
if loc is None:
loc = self.position
cdist , producers = self._world.cdist, self._world.producers
if cdist > 0:
distances = self._world.producer_distances(loc)
#get producer info when xallx have modern option
infodict = self._world.producer_infos(v=v, w=w, rho=rho, growers=producers)

growers = list () #the desirable (profitable) growers

total_profit = 0

for prdr in producers: #determinate order of iteration
info = infodict [prdr]

contract = info [’ ’contract’]
assert (contract & CONTRACTS|[’offer’]) #pretended every prdr has an offer
if info[’sector’] = 2: #if prdr wd accept an offer

assert (contract & CONTRACIS|’accept’])

#this producer wants a contract, check ex ante (KF) profitability

#to see if it will actually get one

revenue = (PF—rho) % info[’q-d’]

cost = KF

if (cdist > 0): #no distance costs in baseline
cost += cdist * distances[prdr]

profit = revenue — cost

if (profit > 0):
total_profit += profit
growers .append ( prdr)

return dict(profit=total_profit , growers=growers)

def choose_growers(self , v, w, rho):

7?77 Return list of Producer,
the producers who appear profitable ex ante,

(g3

given ‘v‘, ‘w‘, ‘rho‘, and the location of the firm.
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def

:note: One might expect contract—related fixed costs
to be incurred here, but that does not make sense
in the EK model, where fixed costs are covered
by factor sales at realized factor prices.

:side—effects: none

gp = self.growers_and_profit(v, w, rho)

return gp[’growers’]

choose_contracts (self , infodict):
??” Return an infodict , marking the growers whose contracts are honored.
Determines firm’s quantity contracted, profit, and rejected growers.
:note: Call this function xafterx the world clears factor markets

for firm’s chosen rho.
:note: this function is roughly a no—op in the baseline,

where all contracts are honored

:side—effects: none
9N

world = self.world

infodict = world.updated_producer_infos(infodict) #new copy
producers = world.producers #for determinate iteration order
params = self.params

KT = params | KT’ |
KM = params [ KM’ ]
PF = params[ 'PF’] #received price per unit of output
world = self.world
cdist = world. cdist #cost per unit distance (zero in baseline case)
#check the profitability of each contract
if (cdist > 0):
distances = world. producer_distances(self.position)
#Get the xex post*x info dicts, given the specification of growers
# (i.e., contract offers); includes contract acceptances
producers = infodict .keys ()
#are these lists wuseful enough to keep? ... chk
growers , rejecters , honored, freneged, preneged = [], [], [], [], [l
total_profit = 0
vwrho = None
for prdr in producers:
info = infodict [prdr]
if vwrho is None:
vwrho = info [’ vwrho’]
v, w, rho = vwrho
else:
assert vwrho = info [ ’vwrho’]
contract = info[’contract’]
sector = info[’sector’]
if bool(contract & CONTRACTS[’ offer’]):
growers .append ( prdr)
if not bool(contract & CONTRACTS[ accept’]):
assert info['K’] = (0,KT)[sector]
if bool(contract):
assert bool(contract & CONTRACIS[’ offer ’])
rejecters .append(prdr)
else: #contract was accepted
assert info[’'K’] = KM
assert bool(contract & CONTRACIS[’offer ’])

if sector != 2: #then the grower reneged (cannot happen in baseline)

preneged . append (prdr)
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info[ contract’] |= CONTRACIS| prenege’]
else: #grower sector is 2, so KM and KF *xalready*x sunk
#producer wants to sell, check profitability (after cdist and KF)
revenue = (PF-rho)* info[’q’]
cost = 0 #:note: KF already sunk
if (cdist > 0):
cost += cdist * distances [prdr]
profit = revenue — cost
if profit > 0:
honored . append ( prdr)
info[’contract’] |= CONTRACTS[’fhonor’]
total_profit += profit
else:
freneged . append (prdr)
#the next is redundant; just for readers convenience
info [’ contract’] |= CONTRACIS[’frenege’]
info[’sector’] = 1 #sector demotion!
if len(freneged)>0:
dpct = world. delta_pct
msg = 7delta {0}: {1} contracts freneged\n”
msg = msg.format (dpct,len(freneged))
world . logger . info (msg)
print (msg)
if len(preneged)>0:
dpct = world. delta_pct
msg = 7delta {0}: {1} contracts preneged\n”
msg = msg.format (dpct,len(preneged))
world . logger . info (msg)
print (msg)
assert len(growers) = (len(rejecters) + len(honored)
+ len(freneged) + len(preneged)), \
”{} growers but {} rejecters + {} honored + {} freneged + {} preneged” .format(
len(growers),len(rejecters),len(honored),len(freneged), len(preneged))
self . honored = honored #property ensures it’s only set once

self.freneged = freneged #property ensures it ’s only set once
return infodict

@property
def freneged(self):
7?77 list [Producer] : the producers reneged on by procurer.

(Not in baseline model.)

return self. _freneged

Q@freneged . setter
def freneged (self, seq):
if self. _freneged is None:
self. _freneged = seq
else:

raise ValueError(’freneged already set; set once only’)

@property
def honored(self):

777 1ist [Producer]| : the producers not reneged on by procurer.

(Not in baseline model.)

return self._honored
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@honored . setter
def honored(self , seq):
if self._honored is None:
self. _honored = seq
else:
raise ValueError(’honored already set; set once only’)

def profitxp(self, rho, infodict):
7?77 Return float , the *xex postx total profit.
State dependence: rho, position, honored, growers.
:todo: discard as redundant?
:note: sunk costs reduce profitxp
:called by: log-macrodata
:side effects: none
params = self.params
PF = params|[’PF’| #received price per unit of output
KF = params|[ ’KF’] #fized cost per sxhonoredxx grower
cdist = self._world.cdist #cost per unit distance
#check the profitability of each contract
if (cdist > 0):
distances = self._world.producer_distances(self.position)
total_profit = 0
honored = list ()
freneged = list ()
for (prdr, info)
profit = 0
contract = info[’contract’]
if bool(contract & CONTRACTS[’'fhonor’]):
honored . append (prdr)
assert not bool(contract & CONTRACIS[’frenege ’])
assert prdr in self.honored
profit += (PF — rho) = info[’q’]
if cdist > 0:
profit —= cdistxdistances [prdr]
profit —= KF
elif bool(contract & CONTRACIS[’frenege’]):
freneged . append (prdr)
profit —= KF  #:note:
total_profit += profit
if bool(honored):
assert honored = self.honored,\
"#honored {}, #self . honored {}”.format(len(honored),len(self.honored))
if bool(freneged):
assert freneged = self.freneged
return total_profit

in infodict.items():

@property
def params(self):
return self.world.params

class World(gridworld . GridWorld ):
7?7 Provides a governing agent,
which creates, coordinates, and documents other agents.
9999
setup_complete = False
_params = None
_procurer = None
_producers = None
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_producer_distances = None

_prng = None

#delta_pct controls Pareto distn of land; see our paper

delta_pct = 10 #starting wvalue

ticks = 0

#rental rate (v) and wage rate (w) arbitrary starting values:

#(remember: you cannot indexr a deque with a slice)

vw_init01 = deque(itertools.product([1.1 + i/10. for i in range(10)],
[0.1 + i/10. for i in range(10)]),100)

vw_init = deque(vw_init01l , 100)

rho_init = deque([1.35], 4) #:note: arbitrary initialization

def setup(self):
777 Return None.
Do the initial setup of the entire world.
Call setup_-agents and set up log file.”””
self.logger.info(’enter World.setup’)
self.setup_complete = False
print ”\nSetup in progress: please wait
self.set_derivedvals ()
self .setup-agents ()
self.setup_outfiles ()
self.test_setup ()
self.setup_complete = True
print ”setup complete: you can now run the model”
self.logger.info(’exit World.setup’)

”

def set_derivedvals(self):
7?77 Return None; set up derived values, which are final
(i.e., these values will remain constant).
:side—effects: set world attributes NO, N1, H, cdist
:todo: use properties to enforce finality
params = self.params
N = params|[’n_agents’]
self .NO = NO = int (round (N % params[’p0’])) #number of landless
self N1 = N1 =N — NO #number of landed
self H= N1//2 + NO #(discrete population; match EK Fig 1 & 2 params)
#the following are not relevant to the baseline scenario
gridsize = self.topology.shape 0]
cdist = 10. / gridsize #basic scaling to size of grid
cdist = params|’cdistscale’] #baseline is 0
self.cdist = cdist

def setup-agents(self):
7?77 Return None; create producer agents and procurer firm.
Note that this setup does NOT include land distribution.
(See ‘setup-_run‘ for that.)
:note: location does not matter in the baseline scenario
#start out with the firm at the center
#(if location matters, we’ll later relocate the firm to a better spot)

params = self.params
center = self.topology.shape[0] // 2
self. _procurer , = self.create_agents(

AgentType=Procurer ,
number=1,
locations=[(center ,center )]

)
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def

#create producers in random locations (which will remain fizxed)
#(but locations do mnot even matter in the baseline)
agents = self.create_agents(

AgentType=Producer ,

number=params | ’n_agents ’ |

)

schedule(self):
7?” Return None. Run one iteration.
This is the core schedule of the simulation.
self.logger.debug(” enter schedule”)
if not self.setup_complete:
raise ValueError(’'must setup before running; please restart’)
# set up the new iteration by resetting all agents
self.ticks +=1
delta_pct = self.delta_pct #the land—distribution control parameter
#setup for this delta: reset agents and distribute land
self .setup_run(delta_pct /100.) #side effects: wvia ‘set_landholdings
msg — 97999
HHHHHHAHHEAHAA IMPLEMENT EK MODEL: NO MODERN SECTOR, #HHHHHHHHHAHE
EXPERIMENT: {}
CLEAR MARKETS WITH NO MODERN SECTOR: delta_pct={}
777 format (self.params.get ( ’name’,”unknown” ), delta_pct)
print (msg)
self.logger.info (msg)
#start by determining traditional factor market clearing
vxa, wxa = self.clear_factor_markets_traditional ()
self.add2vwinit (vxa, wxa, 1) #side effect: append to vw_init01
#log the resulting data (pre—modern, so: rho=1 and no growers)
infodict = self.producer_infos(v=vxa, w=wxa, rho=1, growers=())
infodict = self.updated_producer_infos(infodict)
#naturally , there has not been any contracting (since no modern sector):
assert not any(info[’contract’] for info in infodict.values())
## RECORD DATA (with no modern sector present)
mktinfo = MktInfo(delta_pct=delta_pct, v=vxa, w=wxa, rho=1, growers=())
self .log_.macrodata(self.oldmacro, mktinfo, infodict)
if (0 = delta_pct % 10): #log micro data every 10th iteration
self.log_microdata(self.oldmicro, infodict)
msg = 777
/I/'I/l/////'I/I/'I/l/lr/rI/I/I/I/I///I/I/I/I/l/////I/I INTRODUCE MODERN SECTO /////'I/I/'I/l/lr/rI/I/'I/I/I/////I/I/l/l/////l/lll/l//
EXPERIMENT: {}
CLEAR MARKETS WITH MODERN SECTOR: delta_pct={}
777 format (self .params.get ( 'name’ ,”unknown” ), delta_pct)
print (msg)
self .logger.info (msg)
# procurer chooses location

firm = self.procurer

if self.ticks==1: #on the first iteration , set firm.position
firm . position = firm.choose_location (v=vxa, w=wxa) #ez ante!
self. _producer_distances = self.producer_distances (firm.position)

if self.has_gui:
firm . display (fillcolor="black’, shape=’circle’, shapesize=(1,1))
st CLEAR MARKETS WITH MODERN SECTOR ettt

A (iterate to find rho, growers ,v,w equilibrium ) #AAH#AH A
eq = self.findeq-modern ()

v, w, rho, growers = eq[’v’], eq[’w’], eq[’rho’], eq[’growers’]
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firm.rho = rho #we could get rid of this; it’s mostly for GUI ease chk
777”What follows is not relevant to the baseline model.

In a model where the procurer can behave opportunistically

(which requires KF > 0, among other things, which it is NOT in baseline),
we would need to determine which contracts are honored.

infodict = self.producer_infos(v=v, w=w, rho=rho, growers=growers)
infodict = firm.choose_contracts(infodict) # calls ‘updated_producer_infos
self .redraw_producers(infodict) #just for the gui

## RECORD DATA (with modern sector present)

¢

mktinfo = MktInfo(delta_pct=delta_pct, v=v, w=w, rho=rho, growers=growers)
self .log_.macrodata(self.newmacro, mktinfo, infodict=infodict) # record macro data
if (0 = delta_pct % 10): # record micro data at select delta vals

self.log_microdata(self.newmicro, infodict)
77?7We close out this iteration with small side effects,
which are just preparation for next iteration.”””
#increment the equality parameter for the mnext iteration
self.delta_pct += self.params[ ’dpp’]
#finally , add v,w, rho to initial values for mnext iteration
#(use as subsequent initial values, to speed convergence)
self.rho_init .append(rho)
self.add2vwinit (v, w, rho)
if self.delta_pct > 99:

self .stop ()
self .logger .debug(” exit schedule\n”)

def reset (self):
7?77 Return None; reset the procurer attributes.

9999 9

self .procurer.reset ()

def add2vwinit(self, v, w, rho):
#This is *xvery*x model specific: we know v and w shd be limited ,
#so we don’t retry “bad” outcomes
#:note: new starting wvalues may affect outcomes, so use with caution
if v< 3 and w< 2: #don’'t retry ”"bad” outcomes
if (rho==1):
self.vw_init01.append ((v,w))
else:
self.vw_init.append ((v,w))

def bracket_maxprofit(self):
77” Return 6—tuple of float (the bracket).
PF = self.params|[ 'PF’]
f2min = lambda p: —self.procurer.profitvwgi(rho=p)[0]
rho_best = np.mean(self.rho_init) #somewhat arbitrary starting value
profit_best = self.procurer.profitvwgi(rho=rho_best )[0]
#protect against the best being nevertheless bad
if profit_best <= 0: #in this case we will try a line search
step = (PF — 1) / 10
rhos = [1 + step * (i+1) for i in range(9)]
pvwgis = [self.procurer.profitvwgi(rho) for rho in rhos]
profits = list (pvwgi[0] for pvwgi in pvwgis)
assert all((profit >= 0) for profit in profits)
idx = profits.index (max(profits))
profit_best = profits [idx]
rho_best = rhos[idx]
if profit_best <= 0: #it does not pay the procurer to operate
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bracket = None
else:

bracket = shrink_bracket (f2min, 1, rho_best, PF, 0, —profit_best, 0)
return bracket

def findeq-modern(self):
77” Return tuple: v, w, rho, growers characterizing equilibrium:
rho, growers is the firm’s best response to v,w, which in turn
is a factor market equilibrium.
:note: offering rho<l contracts pointless; rho>PF contracts counterproductive,
so we can bracker the best rho within that interval
:note: currently prints lots of notes as user info
:side—effects: calls self.reset ()
self .reset () #:note: just resets procurer
bracket = self.bracket_maxprofit ()
if bracket is None: #modern sector is mnot profitable
v, w = self.clear_factor_markets_traditional ()
return dict(profit=0, v=v, w=w, rho=1, growers=())

else:
(xa, xm, xb, fa, fm, fb) = bracket
rho_best = xm
profit_best , v_best, w_best, growers_best, infodict_-best =\
self .procurer.profitvwgi(rho=rho_best) #initialize
#Remove the following redundant test? chk
for grower in growers_best:

sector = infodict_best [grower|[ 'sector’]
assert sector=— 2, 7{} vs {}”.format(sector ,2)
assert np.allclose(—fm, profit_best)
print ””””NOTE: SEARCH for equilibrium with modern sector.

Our initial rho value (based on previous rho values) is: {}.
This rho gives us a profit of {}.

(We’ 11 try to do better than that.) BEGIN SEARCH

7?77 format(rho_best, profit_best)

f2min = lambda p: —self.procurer.profitvwgi(rho=p)[0]

print "””’NOTE: starting bracket is ({},{}.{});

starting fvals are ({},{},{})

777 format (xa,xm,xb, fa ,fm, fb)

#next do the simplest imaginable bracket search for the best rho

rho, negprofit = simple_bracket_search (f2min, xa, xm, xb, fa, fm, fb)
profit , v, w, growers, infodict = self.procurer.profitvwgi(rho=rho)
#:note: just some error checks

assert profit = —negprofit, "{} vs {}”.format(profit,—negprofit)

assert profit >= profit_best, "{} vs. {}”.format(profit ,profit_best)
#
if profit > profit_best:
profit_best , v_best, w_best, rho_best, growers_best, infodict_-best =\
profit , v, w, rho, growers, infodict
msg = 7delta_pct {}: procurer chooses rho={}".format(self.delta_pct ,rho_best)
self .logger.info (msg)
print (msg)
return dict(v=v_best
w=w_best
,rtho=rho_best
,growers=growers_best
,profit=profit_best
,infodict=infodict_best

)
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def setup_run(self, delta):
77?” Return None. Reset the firm and producers.
Distribute land among producers.
This prepares for one run (i.e., one land distribution).
:side—effects: reset firm & producers; distribute land

99999

#setup firm

self.procurer.reset ()

#setup producers

producers = self.producers

#new land distribution!

self.set_landholdings (producers, self.delta_pct/100.)
self.test_runready ()

def set_landholdings(self, producers, delta):
?7” Return None, set the hbar and bbar of all ‘producers
Set the display size of the producers, based on land holdings.
:called —by: setup-run
:side—effects: set hbar and bbar for each producer
if not (delta > 0.0) and (delta < 1.0): #preconditions

raise ValueError(”delta={} but must be in (0,1)”.format(delta))

H, N1 = self.H, self.N1

¢

params = self.params
phi, theta = params[’phi’], params[’theta’]
ishares = incremental_shares_pareto (N1, (1—delta) / (1+delta))
p =0 #initialize proportion of landed producers
for i, prdr in enumerate(producers): #prdr doesn’t need to know its p
if i < NI1:
share = ishares|[i]
hbar = H % share
else:
p=20

hbar = 0 #prdr is landless
prdr.hbar = hbar
#Calculate bbar up front instead of each of the many times needed.
#in principle , landless could access credit (but, phi=0 in EK)
prdr.bbar = phi + (theta % hbar)
#display size will depend on land ownership
if self.has_gui:

prdr.display (shapesize=(share + 0.2, p + 0.2))

def clear_factor_markets_traditional (self):
77”7 Return 2—tuple of float , the equilibrium factor prices
when there is no modern sector.
:side—effects: none
Parameters

add2vwinit : bool

whether to append to vw_initOl (breaking referential transparency)
99999

return self.clear_factor_markets(rho=1, growers=())

def clear_factor_markets(self, rho, growers):
7?7” Return None. Simultaneous factor market clearing.
:side—effects: none
Parameters
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rho : float
relative procurer price
growers : sequence
procurers who are offered contracts
logger = self.logger
logger .debug(”World: Enter clear_factor_markets_simultaneously.”)
#define factor market clearing:
f2solve = lambda vw: self.xss_land_labor (vw=vw, rho=rho, growers=growers)
success = False #we Il set this to True if we get convergence
if (rho==1):
vw_init = self.vw_init01
else:
assert rho > 1
vw_init = self.vw_init
for ct, vw in enumerate(reversed(vw_init)): #try stored starting values
try: #comment: tighter xtol does not help
output = fsolve (f2solve, vw, full_output=1, xtol=1e—06)
(v, w) = map(abs, output[0]) #needed because zss_land_labor wuses abs
except minpack.error: #factor prices should stay positive
continue #try another set of initial values
if output[2]==1:
(z1,z2) = output [1]][ fvec’]
if (abs(zl <1) and abs(z2 < 1)):
success = True
break

#the rest is just reporting with one exception: may append to vw_init
msg = ”Given rho={:6.4f}, ”.format(rho)
if success:
msg += ”factor markets clear at v={:6.4f}, w={:6.4f}.” .format(v, w)
msg += ”\n(factor mkt convergence in {} tries)”.format(ct+1)
logger . debug (msg)
print (msg)
else:
msg += ’\nfactor market fails to converge:\n’ + output|[—1]
logger . warn (msg)
print (msg)
self .logger.debug(”World: Exit clear_factor_markets_simultaneously.”)
assert (v > 0 and w > 0)
return v, w

def producer_distances(self, loc):
7?77 Return dict , mapping agents to floats.
The distances of the agents from ‘loc ‘.
Memoized: past computations stored by this.
:side—effects: none.

99979

#first check if we have already stored the distances:

distances = self._producer_distances
if distances is None:
producers = self.producers

distances = dict ()
fx, fy = loc
for prdr in producers:

ax, ay = prdr.position
distances [prdr] = math.hypot (fx—ax, fy—ay)
else:
assert loc = self.procurer.position
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def

def

return distances

producer_infos(self, v, w, rho, growers):

7?77 Return dict , mapping producers to their info.
:note: expensive, because ‘calc_info ‘ calls ‘choose*
:side—effects: none

299N

result = dict ()

for prdr in self.producers:

for each producer

is_grower = prdr in growers

info = prdr.calc_-info (v=v, w=w, rho=rho, has_contract=is_grower)
contract = info[’contract’]

assert is_grower == bool(contract & CONTRACTS[’offer ’])

assert info[’vwrho’] = (v, w, rho)

result [prdr] = info

return result

updated_producer_infos(self , infodict):
?7?7” Return dict , mapping producers to properties

WITH ex post short—side constraints imposed (see below)

3

:called —by: ‘schedule‘ and ‘choose_contracts
:side—effects: none

27NN

infodict = infodict.copy() #avoid side effects
infoseq = infodict.values ()

producers = self.producers

#We seem usually to succeed in clearing factor markets,

# but just in case: if not, take the short side.
H#LAND market
land _supply , land_demand = self.sd_land (infoseq)

assert (np.allclose(self.H,land_supply) and land-demand >= 0)

if (land_supply >= land_demand):
for info in infoseq:
assert "h” not in info
info[’h’] = info[ h.d’]
else: # zss_land < 0, excess demand for land
scale = land_supply / land_-demand
assert (0 < scale < 1)
for info in infoseq:
assert "h” not in info
#:todo: might be nice to attend to hbar?
info[’h’] = scale % info[ ’h.d’]
#LABOR market
labor_supply , labor_.demand = self.sd_labor (infoseq)
#print “sd L:7, labor_supply, labor_demand
assert (labor_supply >= 0 and labor_demand >= 0)

#:note: we will allow for a small approximation error:

if abs(labor_supply — labor_demand) < 0.01xself .H:
for info in infoseq:
assert "L” mnot in info
info[’L’] = info[’L.d’]
info[’tw’] = info [ tw.d’]

elif labor_supply < labor_demand: #ezcess demand for labor

scale = labor_supply / labor_demand
assert (0 <= scale < 1)
for info in infoseq:

assert "L” not in info
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info[’tw’] = info[ tw.d’]
info[’L’] = scale * info[’L.d’]
else: #excess supply of labor
scale = labor_.demand / labor_supply
assert (0 <= scale < 1)
for info in infoseq:
assert "L” not in info
assert "tw” not in info

info[’tw’] = scale * info[ ’tw.d’]
print ”scaled:”, scale, info[’tw.d’], info[ tw’]
info[’L’] = info[’L.d’]
params = self.params
D, sl, s2 = params[’D’], params[’sl’], params][’s2’]
povertyline = params[’povertyline’]
for prdr, info in infodict.items ():
L = info [ 'L’]
info[’ts’] = ts = (sl % L) + (82 %= L * L)
info[’th’] = th = info [ th_-d’]
info[’tr’] = tr =1 — info[’tw’] — th — ts
assert (”7q” mnot in info) and (7Y’ not in info) and (”U” not in info)
info[’q’], info[’Y’], info[’U’] =q, Y, U = prdr.qYU(info)
assert np.allclose (info[’U’], info[’Y’] + D * math.sqrt(info[ tr’]) )
info[’is_poor’] = int(Y < povertyline)

self .logger.debug(”World: Exit updated_producer_infos.”)
return infodict

def xss_land_labor(self, vw, rho, growers):
777 Return 2—tuple of float: the excess supplies.
Called repeatedly to clear factor markets (given

¢ ¢

rho‘, ‘growers ‘).

vw : 2—tuple of float

land rental price, wage
rho : float

modern sector price premium
:side—effects: none
vV, W= VW
#constrain v>0, w>0
v, w = abs(v), abs(w)
infodict = self.producer_infos(v=v, w=w, rho=rho, growers=growers)
infoseq = tuple(infodict.values())
xss_land = self.xss_land (infoseq)
xss_labor = self.xss_labor (infoseq)
return xss_land, xss_labor

def xss_land(self, infoseq):
7?77 Return float , the excess supply of land.
:side—effects: none
land _supply, land_demand = self.sd_land (infoseq)
return self.xss(land_supply, land_-demand)

def xss_labor (self, infoseq):
7?77 Return float , the excess supply of labor.
:side—effects: none
labor_supply , labor.demand = self.sd_labor(infoseq)
return self.xss(labor_supply, labor_demand)
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def sd_land (self, infoseq):
7?77 Return float , the excess supply of land.

Parameters

infoseq : tuple of dict

producers info for all producers
:side—effects: none
land_supply = self.H
land_demand = sum(info[’h_.d’] for info in infoseq)
return (land_-supply, land-demand)

def sd_labor (self, infoseq):
777 Return float , the excess supply of labor.

Parameters

infoseq : tuple of dict

info dict for each producer
:side—effects: none
labor_supply = sum(info[’tw_.d’] for info in infoseq)
labor_.demand = sum(info[’L_.d’] for info in infoseq)
return (labor_supply, labor_demand)

@staticmethod
def xss(s, d):
7?7” Return float , the (possibly scaled) value of s—d.
Checks for non—negativity .
assert (d >= 0 and s >= 0)
if (d==0 and s==0):
msg = "WARN:\n”
msg += ’supply: {0}; demand: {1}’ .format(s, d)
print (msg)
logging . warn (msg)
result = 0
elif (d==0 or s==0):
#result = 2x(s—d)/(s+d)
result = s — d
else:
result = s — d
return result

def market_info(self, infoseq, v, w):
?7?” Return str, a market description.
infoseq : list of dict
each dict is the info for a producer
info = ”"Market info at v={v} and w={w}.” .format (v=v,w=w)
producers = self.producers
land_supply = sum(prdr.hbar for prdr in producers)
assert np.allclose (land_supply ,self .H)
land_demand = sum(prdr[’h.d’] for prdr in infoseq)
info 4= 77”7 \nLand Market:
xs supply: {hxss}
(scaled xss:{mhxss})
land supply: {hs}
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land demand: {h._d}

n suppliers: {hsupp}

n demanders: {hdmnd}

777 format (

hs=land_supply ,

h_d=land_demand ,

hxss=land_supply —land_demand ,
mhxss=self.xss(land_supply ,land_demand) ,
hsupp=sum(prdr.hbar>0 for prdr in producers),
hdmnd=sum(prdr [ ’h_d’]>0 for prdr in infoseq)

)

labor_supply = sum(prdr[’tw-d’] for prdr in infoseq)

labor_demand = sum(prdr[’L_.d’] for prdr in infoseq)
info +: NN

Labor Market:

xs supply: {nxss}

(scaled xss:{mnxss})

labor supply: {ns}

labor demand: {nd}

n suppliers: {nsupp}

n demanders: {ndmnd}

777 format (

ns=labor_supply ,

nd=labor_demand ,
nxss=labor_supply—labor_demand ,
mnxss=self.xss(labor_supply ,labor_demand),
nsupp=sum(prdr [ ’tw.d’]>0 for prdr in infoseq),
ndmnd=sum( prdr [’L_d’]>0 for prdr in infoseq)

)

return info

def setup_outfiles(self):
77”Return None. Set up the output files.
There are four core output files:
‘oldmacro ¢ and ‘oldmicro‘ record data from
the model without a modern sector,
‘newmacro‘ and ‘newmicro‘ record data from

the model with a modern sector.
790N

params = self.params

self .oldmacro = params[’oldmacro’]
self.oldmicro = params[’oldmicro’]
self .newmacro = params| newmacro’ |
self .newmicro = params[’ newmicro’]

777 Add a header to the output files.”””
with open(self.oldmacro, ’w’) as fout:
fout.write( ’,’.join (macro_datanames) )
with open(self.oldmicro, ’w’) as fout:
fout.write( ’,’.join (micro_datanames) )
with open(self.newmacro, ’w’) as fout:
fout.write( ’,’.join (macro_datanames) )
with open(self.newmicro, ’w’) as fout:
fout.write( ’,’.join (micro_.datanames) )

def log_macrodata(self, fname, mktinfo, infodict):
7?77 Return None; log macro data from the simulation.
:todo: streamline accumulated cruft
:side—effects: none
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params = self.params
KM = params | KM’ ]
KF = params [ KF’ ]
PF = params|[ 'PF’]

n_agents = params|’n_agents’]

cdistscale = params|’cdistscale’]

theta = params[’theta’]

povertyline = params|’povertyline’]

H = self.H

#

delta_pct = mktinfo.delta_pct

v = mktinfo.v

w = mktinfo.w

rho = mktinfo.rho

growers = mktinfo.growers

prdrs = list (infodict.keys())

assert len(prdrs) = n_agents

assert set(self.producers) = set(prdrs)

for prdr, info in infodict.items():
assert (v,w,rho) = info [’ ’vwrho’],\

"v {}, w {}, rho {}, vwrho {}”.format(v,w,rho,info [’ vwrho’])
Y = info[’Y’]

if (Y==0):
assert (info[’K’]==0 and info [’ sector ’]==0)
infoseq = infodict.values ()
if (rho==1):
assert all(info[’contract’] = 0 for info in infodict.values())
#record parameter values
firm = self.procurer

delta = delta_pct / 100.
#class and sector counts
land_use = defaultdict (float)

class_counts = defaultdict (int)
sector_counts = defaultdict (int)
Ulandless = 0

n_modern, n_poor = 0, 0
modern_sector_agents = list ()

n_contract = 0 #number offered contracts
n_accept = 0 #number accepted contracts

Qtotal , QMtotal = 0, 0
Ytotal, YMtotal = 0, 0
Utotal , UMtotal = 0, 0
for prdr, info in infodict.items():
Qtotal 4+= info[’q’]
Ytotal 4= info [’Y’]
Utotal += info['U’]
land_use [info [’ pclass’]] += info [ ’h’]
class_counts [info [ pclass’]] +=1
sector_counts [info [ ’sector’]] +=1
if prdr.hbar = 0:
assert info [ hbar’]
Ulandless += info [’U’]
if bool(info[’contract’] & CONTRACTS|[  offer’]):
n_contract +=1
if bool(info[’contract’] & CONTRACTS[ accept’]):
assert bool(info[’contract’] & CONTRACTS[ offer ’])
n_accept += 1
if info[’sector’] = 2:

0
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QMtotal += info[’q’] #modern sector output
YMtotal += info [’Y’] #modern sector incomes
UMtotal += info ['U’] #modern sector incomes
modern_sector_agents.append (prdr)
n_modern += 1
n_poor += info [’ ’is_poor’]
assert n_agents — sum(class_counts.values())
Qav = Qtotal / float(n_agents)
Yav = Ytotal / float(n_agents)
Uav = Utotal / float(n_agents)
assert n_modern = len(modern_sector_agents)
QMav = 0 if (n_modern==0) else QMtotal / float (n_modern)
YMav = 0 if (n_modern==0) else YMtotal / float (n_modern)
UMav = 0 if (n_modern==0) else UMtotal / float (n_modern)
#class counts

n_class0 = class_counts [0]

n_classl = class_counts [1]

n_class2 = class_counts [2]

n_class3 = class_counts [3]

n_class4 = class_counts [4]

assert n_class0 + n_classl + n_class2 + n_class3 + n_class4 = n_agents,\
"Instead of equal values, we find {} and {}.”.format(ct,class_counts.values())

#sector counts

n_sector0 = sector_counts [0]

n_sectorl = sector_counts [1]

n_sector2 = sector_counts [2]

assert n_sector0 + n_sectorl + n_sector2 = sum(sector_counts.values()) = n_agents,\
"Instead of equal values, we find {} and {}.”.format(ct,sector_counts.values())

#land wuse

assert np.allclose (H, sum(prdr.hbar for prdr in prdrs))

assert np.allclose (H, sum(info [ hbar’] for info in infoseq)

)
hsumPL = sum(info[’h’] for info in infoseq if info[’pclass’]
hsumLC = sum(info[’h’] for info in infoseq if info [’ pclass’|==
hsumSC = sum(info[’h’] for info in infoseq if info[ pclass’]
hsumSM = sum(info [’h’] for info in infoseq if info[’pclass’]
hsumLG = sum(info[’h’] for info in infoseq if info [’ pclass’]
if params|’phi’] <= 0:

assert np.allclose (0, hsumPL)
assert np.allclose ((hsumPL,hsumLC, hsumSC, hsumSM, hsumLG) ,
(land_use [0] ,land_use [1],land_use [2],land_use[3],land_use[4]))
if not np.allclose (H, hsumPL+hsumLC+hsumSC+hsumSM-+hsumLG ) :
msg = ”land use = {0} but land supply = {1}”
msg = msg. format (hsumLC+hsumSC+hsumSM+hsumLG , H)
self.logger.warn (msg)

hd_total = sum(info[’h_d’] for info in infoseq)

]
twd_total = sum(info[’tw_.d’] for info in infoseq)
thd_total = sum(info[’th_.d’] for info in infoseq)
Ld_-total = sum(info[’L.d’] for info in infoseq)
sl, s2 = params[’sl’], params|’s2’]
tsd_total0l = sum(slxinfo[’L.d’] for info in infoseq)
tsd_total02 = sum(s2*info[’L.d’]**2 for info in infoseq)
tsd_total = tsd_total0l 4 tsd_total02
assert QMtotal = sum(info[’q’] for info in infoseq if info[’sector’]==2)
p-qmodern = QMtotal/Qtotal
Ys = list (info[’Y’] for info in infoseq)
Y = sum(Ys)

gini_y = gini(Ys)
p-ymodern = YMtotal / Y
Us = list (info[’U’] for info in infodict.values())
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def

def

def

gini_u = gini (Us)
assert all(U > 0 for U in Us)
p-poor = float(n_poor) / float(n_agents) #casts for reader convenience
ms_counts = Counter(infodict[a][ ' pclass’] for a in modern_sector_agents)
self .logger.info(’{0} modern agents, class: {1}’ .format(n_modern,ms_counts))
n_modern = len(modern_sector_agents)
p-modern = float (n_modern) / float(n_agents) #casts for reader convenience
n_honor = sum(bool(info[’contract’] & CONTRACIS|[ fhonor’]) for info in infoseq)
n_prenege = sum(bool(info[’contract’] & CONTRACTS[ 'prenege’]) for info in infoseq)
n_frenege = sum(bool(info[’contract’] & CONTRACIS| ’'frenege’]) for info in infoseq)
print ”"contracts {}, modern {}, frenege {}, prenege {}, accept {}”.format(
n_contract , n.modern, n_frenege, n_prenege, n_accept)
assert (n-contract=—sum(bool(info[’contract’]) for info in infoseq))
p-contract = float(n_contract) / float(n_agents) #cast for reader convenience
assert rho =— firm.rho #:todo: remove
Pi = firm.profitxp (rho, infodict)
if __debug__ and (rho==1.0):
assert (Pi = 0), ”"Pi shd be zero (since rho=1) but Pi={}”.format(Pi)
with open(fname, ’a’) as fout:
strdata = [str(eval(x)) for x in macro.datanames]
fout.write(’\n’ + ’,’.join (strdata))

log_microdata(self , fname, infodict):
?7” Return None.

Log micro data from the simulation.”””

params = self.params

attnames = micro_datanames

assert attnames[0]==delta_pct’

with open(fname, ’a’) as fout:

for prdr, info in infodict.items():

strdata = [str(self.delta_pct)]
strdata += list (str(info[attr]) for attr in attnames|[1:])
fout.write(’\n’ + ’,’.join (strdata))

test_setup (self):

77?”Return None. Basic tests of overall setup.

Also see ‘test_runready ‘.

params = self.params

#agents

assert len(self.producers) = params|[’n_agents’], ’shd match’
#firm

firm = self.procurer

assert firm.params is params

assert firm.world is self

#the next test is a bit expensive and has low payoff; remove? chk
infodict = self.producer_infos(v=1,w=1,rho=1, growers=())
assert len(infodict) = params|’n_agents’], ’shd match’
assert all(info[’sector’]<2 for info in infodict.values())

test_runready (self):

777 Return None.
7N

params = self.params
producers = self.producers
assert len(producers) = params|’'n_agents’], ’shd match’

assert np.allclose(self .H,sum(a.hbar for a in producers)),\
"H={0}; sum={1}".format(self.H, sum(a.hbar for a in producers))
landless = [a for a in producers if a.hbar==0]
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assert len(landless)==self.NO, "{} vs {}”.format(len(landless),self.NO)
firm = self.procurer

assert firm._growers is None

assert firm._honored is None

assert firm.rho =1

#properties

@property
def params(self):
77” Return dict , the model parameters.

9979

return self._params

@params. setter
def params(self, prms):
7?77 Sets the ‘params‘ property.
Used only once per simulation (during setup).
99999
if self._params is None:
self . _params = prms
else:
raise ValueError(’params can only be set once’)

#read—only properties

@property
def procurer(self):
77” Return Procurer.
97999
if self._procurer is None:
self. _procurer, = self.get_agents(Procurer)
return self._procurer

@property
def producers(self):
7?77 Return tuple of Producer.
if self._producers is None:
self . _producers = tuple(self.get_agents(Producer))
return self._producers

#minor safety features

@property
def v(self):
raise NotlmplementedError

@property
def w(self):
raise NotlmplementedError

#GUI stuff:

def redraw_producers(self , infodict):
?77” Return None. Redraws producers.

GUI relevance only.

if not self.has_gui:
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return
for prdr, info in infodict.items():
prdr.redraw (info)

class GUI(gridworld .GridWorldGUI):
?7” Provides a GUI for the model run.

For user convenience only.
9999

def gui(self):
7?7 Display buttons and plots.
self.add_button(’Set Up’, ’setup’)
self.add_button(’Run’, ’run’) #run calls schedule (see gridworld.py)
self.add_button(’Stop’, ’stop’)

999 99

# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 autoindent
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?7” File: utilities .py

Provides various utilities to distribution.py
799N

from __future__ import division

import numpy as np

def gini(x):
?7” Return float , the computed Gini coefficient .
We compute the Gini by approximating the area B
under the Lorenz curve with a trapezoidal
Riemann sum. (Right and left sums differ by 1/N).
xsort = sorted(x) # increasing order
y = np.cumsum( xsort)
N = float (len(xsort))
#approzximate the area under Lorenz curve:
B = sum(y) / (y[-1] * N)
return 1 + 1./N — 2xB

def incremental_shares_pareto(n, gini):
777 Return list of float , the incremental shares.
n : int
number of agents to recieve share
gini : float
inequality parameter
Notes
Given the target Gini inequality coefficient g,
let delta=(1—g)/(1+g). Then the Lorenz curve
for a Pareto distribution with Gini=g can be written as
$F(p) =1 — (1 — p)"\delta$ where $0 < \delta \leq 1%
and $p$ is the cumulative proportion agents (out of n agents).
In the discrete case, let $p_i= i/n$ for $i=1,\dots,n$.
The cumulative share of those with no more than the $i$—th agent is
$F(p-i) =1 — (1 — p-i)~\delta$, so the incremental share agent $i$ is
$F(p-i) — F(p-{i—1})
=1 - (1 — p_i)”"\delta— [1 — (1 — p_{i—1})"\delta]
=— (1 — p_i)"\delta + (1 — p_{i—1})"\delta
= (1 — p_{i—1})"\delta — (1 — p-i)~\delta$

99999

delta = (1 — gini) / (1 + gini)

ishares = list ()
p = 0.0
for i1 in range(n):
p-1 =p # =il / n

p= (i1 +1.0) / n
ishare = ((1—p-1)*xdelta — (1—p)*xdelta) #incremental share
ishares .append(ishare)

return ishares

def shrink_bracket(f, xa, xm, xb, fa, fm, fb):
7?7 Return tuple, a narrower bracket of the min,
(xa,xm,xb, fa ,fm,fb).
f : callable
the function to be minimized
xa, xm, xb : float
bracket of the minimizer, with xa < xm < xb
fa, fm, fb : float
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values of f at xa. xm, xb
29

if not (xa < xm < xb): raise ValueError(”not an interval”)
if not (fm < fa and fm < fb):

msg = " ({},{}.{}) =>{},{},{}) is not a bracket”

msg = msg.format (xa,xm,xb,fa  fm, fb)
raise ValueError (msg)
xstart = xm

fstart = fm
print f(9%xm/10.)
print ”bracket0l: {} — {} vs {}”.format (xm,fm, f(xm))
#we Il first search to the left
for wt in range(2,10): #rising weight on boundary
wt /= 10.0
xleft = wtxxa + (l1—wt)xxstart #move left relative to fized start value
fleft = f(xleft)
if fleft > fm:
xa, fa = xleft, fleft
break
if fleft < fm: #better reference point
xb, fb = xm, fm
xm, fm = xleft , fleft
print ”bracket: {} — {} vs {}”.format (xm,fm, f(xm))
assert (xm <= xstart)
assert (fm <= fstart)
#then we’ll search to the right
xstart = xm
fstart = fm
for wt in range(2,10): #rising weight on boundary
wt /= 10.0
xright = wtxxb + (1—wt)*xxstart #keep the movement relative to fized zstart
fright = f(xright)
if fright > fm:
xb, fb = xright, fright

break
if fright < fm: #better reference point
xa, fa = xm, fm

xm, fm = xright, fright
assert (xm >= xstart)
assert (fm <= fstart)
return xa, xm, xb, fa, fm, fb

def simple_bracket_search(f, xa, xm, xb, fa, fm, fb):
7?77 Return float , the approximate minimizer
found by bracketed search.
assert xa < xm < xb
assert fa > fm and fb > fm
while abs(xb—xa) > 0.005:

fm_old = fm

#first see if we can move min to left
xam = (xa + xm) / 2.

fam = f(xam)

if (fam < fm):
print ”bracket: move min to left”
xb, fb = xm, fm
xm, fm = xam, fam
assert fm < fm_old
assert fm =— f(xam)
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continue
#next see if we can move min to right
xbm = (xb + xm) / 2.
fom = f(xbm)
if (fbm < fm):
print ”bracket: move min to right”

xa, fa = xm, fm
xm, fm = xbm, fbm
assert fm < fm_old
assert fm =— f(xbm)
continue

#remaining case: fom>fm and fam>fm
assert (fbm > fm) and (fam > fm)
xa, fa = xam, fam
xb, fb = xbm, fbm
assert fm = fm_old

print ”bracket:” , xm, fm

assert fm=—f(xm), 7{} vs {} vs {}”.format(fm_old ,fm, f(xm))
return xm, fm

# vim: tabstop=4 expandtab shiftwidth=4 softtabstop=4 autoindent
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?7” File: choose.py

Provides functions for choice of production activity
(determining pclass). Many functions return a dict,
with the following keys:

pclass: int

production class (0, 1, 2, 3, 4)
tr.d : float

quantity of leisure
tw_d : float

time working off—farm
th_.d : float

quantity of time working on—farm
ts.d : float

quantity of time working on—farm

L.d : float
quantity of hired labor
h.d : float

quantity of land operated
q-d : float
output planned.

Y.d : float
Income
Ud : float

Utility at the maximum
” NN
import math, logging
import numpy as np
from scipy.optimize import fminbound

### global constant #HH#

constraints = dict(
B=(1<<0),
Rl1=(1<<1),
rA=(1<<2),
ell0=(1<<3),

)

def cultivate (agent, K, v, w, rho, params):
77? Return dict of agent attributes,
including pclass, factor demands, and expected welfare.

Parameters
agent : Producer
(Need its hbar and bbar.)
K : float
sector specific fixed cost (KT or KM)
v : float
Price of land
w : float

Price of labor
rho : float

Premium associated with participation in modern value chain
params : dict

Model parameters, especially sl, s2, D, KM, KT.

(See distribution.py for the definitions)

Returns

agentinfo : dict
keys are pclass ,tr.d ,tw.d,th.d,L.d,h.d,q.d,Y.d,lmda,U._d

(See the module documentation for definitions.)
N NN

assert K in (params[’KT’],params|[’KM’]), ’unrecognized fixed cost type’
assert rho >= 1, ”?rho={}; caller shd ensure rho >= 1”.format(rho)

49



B = agent.bbar + vxagent.hbar — K #working capital depends on hbar and K
if math.isnan (B):

msg = "B={}, bbar={}, hbar={}, K={}, v={}, w={}, rho={}"

msg = msg.format (B, agent.bbar,agent.hbar ,K,v,w,rho)

raise ValueError (msg)
B1, B2, B3 = bl23(agent, K, v, w, rho, params)

if B < Bl:

# Producer is LC (laborer_cultivator )

agentinfo = laborer_cultivator (agent, B, K, v, w, rho, params)
else:

# Producer is SC, SM, or LG

agentinfo = cultivator (agent, B, K, v, w, rho, params)

agentinfo [ ’K’] =K
return agentinfo

def bl23(agent, K, v, w, rho, params):
?7” Return 3—tuple of float ,
the values of Bl, B2, and B3.

299

assert (K==params[ KT’] or K==params[ KM’])

A = agent.A #Productivity parameter

sl = params|’sl’]| #first—order aspect of supervision function
s2 = params|’s2’] #second—order aspect of supervision function
D = params|’'D’] #scale factor: sub—utility of leisure

dar =D / (rho * A)
dar2 = dar * dar
dar4 = dar2 x dar2
Bl = w — vxdarxdar
B2 = Bl + wx s1/(1 — s1)
a2r2 = AxAxrhoxrho
assert np.allclose (B2, w/(1 — s1) — vxdarxdar)
old_disc = (4%s2%%2«Dxxdsvi*x2 — 4%a2r2%s2+Dxx2xviw + a2r2*a2r2x(sl**2 + 4%s2 )kw**2)
0ldB3 = —(2%s1xs2*D*#2%v — 2ks1**x2xs24Dxx2xv — 8xs2**x2xDk*2xv \
+ a2r2x(—2xslsw + sl*xx2xw 4+ sl**x3xw + 4xs2*w + 4dxslxs2xw) \
— (=2 4+ sl 4 sl*%x2 + 4xs2) \
¥ np.sqrt (dxs2xx2xDxxd*xvax2 — 4xa2r2%s2*xDxx2xviw + a2r2*a2r2x(sl*x2 + 4xs2)xwxx2))\
/(2%xa2r2xs2%(—1 4+ sl**x2 + 4%s2))
disc = (s2#s2xdardxvsv — s2xdar2*xvsw + (slxx2/4 4+ s2)xwxw)
assert np.allclose(old_disc, 4xa2r2«a2r2 = disc)
if disc < 0: #shd only happen due to rounding error
assert np.allclose (0, disc), ”{}”.format(disc)
disc = 0
B3 = ((sl — sl*slx(l 4 s1)/2 — 2xs2 — 2xsl*s2)sw \
+ (sl 4+ sl%%2 + 4%xs2 — 2) % np.sqrt(disc) \
— dar2xvxs2#(sl — slxx2 — 4xs2)) \
/(s2%(—=1 + sl*%2 4 4xs2))
if disc > 0:
assert np.allclose (B3,0ldB3)
assert Bl <= B2 <= B3, ’Bl:{Bl}, B2:{B2}, B3:{B3}’.format(B1=B1,B2=B2,B3=B3)
return Bl, B2, B3

def cultivator(agent, B, K, v, w, rho, params):
?7”” Return dict of producer attributes,
including pclass, factor demands, and welfare.
1. Try SM. If th<O0, switch to LG. Elif L<0 switch to SC.
2. If capital constraint binds, delegate to constrained_cultivator.

Parameters
agent : Producer

the agent (we need its hbar and A attributes)
K : float

Fixed set—up costs
rho : float

Premium associated with participation in modern value chain
v : float
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Price of land

w : float
Price of labor
params : dict

Model parameters, especially sl, s2, D, KM, KT.
(see distribution.py for the definitions)

Returns

result : dict
keys are pclass ,tr.d ,tw.d,th.d,L.d,h.d,q.d,Y.d,lmda,U._d
(See the module documentation for definitions.)

Warning :

Currently has multiple (3) return points.

assert (K=params|[’KT’] or K=params|[ KM’])

hbar, A = agent.hbar, agent.A

sl, s2, D = params[’sl’], params[’s2’], params|[’D’]
result = dict(tw_.d=0, constraints=0)

dar =D / (A % rho)

dd2 = Dx«D

aa2 = AxA

rr2 = rhoxrho

VV2 = vV

a2r2 = aa2xrr2

ardvw0l = a2r2 — 4xviw

ardvw02 = a2r2 / (4 % v * w)
#compute SMUOI
pclass = 3 #SM
Lou = (1-s1-1/ardvw02)/(2%s2)
#
assert np.allclose(L_u, (1—-s1)/(2%s2) — (2 * v % w)/(s2*xa2r2) )
#
tr-u = (4xdarxdarxvv2)/a2r2
ts_u = sl*xL_u + s2xL_uxL_u
th.u =1 — tr.u — ts_u
hou = (w/v)*xardvw02x(14+L_u—ts_u—tr_u)
if (Lou < 0): #try SCU instead (i.e., impose L=0)
assert (ardvw02 < 1/(1—sl))
if (a2r2 <=2 * D * v): #production does not pay
result = pure_laborer (agent, v, w, params)
result [’Y.d’] —= K
result [’U.d’] —= K
return result

P #:todo: wugly return point
else: #SCU

pclass = 2

Lu=0

ts_u =0

h_u = a2r2/(4xvv2) — darxdar

tr_u = 4xvxvxdarxdar/a2r2

thou =1 — tr_u
assert np.allclose(th_u, h_ux4xvv2/a2r2)
elif (th_u < 0): #try LGU instead

assert (ardvw0l >= 2«Dxvxsl) #weighted average of above conditions —> L>=0 for LGU
pclass = 4

th.u =0
s12 = s1/(2xs2)
L.ou = —s12 + math.sqrt(sl12%s12 + 1/s2) % ardvw0l / math.sqrt (16xdd2+vv2xs24+ardvw0Ol+ardvw01)

ts_u = sl*xL_u 4+ s2xL_uxL_u

assert L_.u>=0, 'L_u={} (should have L_u>0 if it pays to produce)’.format(L_u)

h_u = (a2r2/vv2) % (L_.u / 4)

trou = 1 — ts_u

assert tr-u >= 0, ’L_u={0} should be constrained to {1}’.format(L_u, maxL)
else: #SMU applies

assert np.allclose(h.u, (w/v)*(14+(1—sl)*L_u—s2+L_uxL_u)/(1—s1—2«s2+L_u)—darxdar),\
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def

def

?{} vs. {}”.format(h.u, (w/v)*(14+(1—sl)*xL_u—s2*xL_uxL_u)/(1—sl—2xs2xL_u)—darxdar)
#test for capital constraint
if (vxh_u 4+ wL_u <= B): #does not bind! we’re done!

assert (0 <= tr_u <= 1)

msg = "cultivator: for pclass {}, capital constraint does not bind”.format(pclass)

logging .debug (msg)

g-u = A % math.sqrt(h_uxL_u)

Y-.u = rhoxq-u — vx(h_u — hbar) — wxL_u — K

U.u = Y_u + Dxmath.sqrt(tr_u)

result .update( pclass=pclass

JK=XK

,hod = hou
,L_d=L_u
,tro.d = tr_u
,th_d=th_u
;gq-d=q-u
,Y_d=Y_u
,U_d=U_u
,Imda=0

else: #capital constraint binds; fetch constrained result

if (pclass = 4):
assert L_u > 4%Bxv / (a2r2 + 4xvsw), ’'LG: L_u should be greater than max unconstrained L’
msg = "cultivator: for pclass {}, capital constraint binds”.format(pclass)
logging .debug (msg)
result = constrained_cultivator (agent, B, K, v, w, rho, params) #switch to constrained result

return result

constrained_cultivator (agent, B, K, v, w, rho, params):
?7” Return dict of agent attributes,

including pclass, factor demands, and welfare.

assert B=—agent.bbar + vxagent.hbar — K

B1, B2, B3 = bl23(agent, K, v, w, rho, params)

assert (B >= Bl)

if Bl <= B <= B2: # Producer is self_cultivator

agentinfo = self_cultivator (agent, B, K, v, w, rho, params)
elif B2 < B < B3: # Producer is small capitalist

agentinfo = small_capitalist(agent, B, K, v, w, rho, params)
elif (B >= B3): # Producer is large capitalist

agentinfo = large_capitalist (agent, B, K, v, w, rho, params)

else:
msg = "Bad B={} (vs Bl={}, B2={}, B3={}”.format (B,B1,B2,B3)
raise ValueError (msg)

return agentinfo

large_capitalist (agent, B, K, v, w, rho, params):
77” Return dict of agent attributes,
including pclass, factor demands, and welfare.

Parameters

B : float
exogenous working capital (may be negative due to K)
hbar : float
Quantity of land owned
K : float
Fixed set—up costs
rho : float
Premium associated with participation in modern value chain

v : float

Price of land
w : float

Price of labor
params : dict

Model parameters, especially sl1, s2, D, KM, KT.
(see distribution.py for the definitions)
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Returns

result : dict
keys are pclass ,tr.d ,tw.d,th.d,L.d,h.d,q-d,Y.d,lmda,U._d
(See the module documentation for definitions.)

assert (K=params|[’KI’] or K=—params|[ KM’])

result = dict(pclass=4, tw.d=0, th.d=0, constraints=0)

B1, B2, B3 = bl23(agent, K, v, w, rho, params)

assert (B >= B3)

hbar = agent.hbar

A = agent.A #Productivity parameter on Cobb—Douglas production function

sl = params|’sl’]

s2 = params|’s2’]

D = params|’'D’]

#1. check that it pays LG to produce

dar =D / (A * rho)

aa2 = AxA

rr2 = rhoxrho

a2r2 = aa2x*xrr2

dd2 = D«D

VV2 = Vv*V

ardvw0l = a2r2 — 4xviw

s12 = s1/(2%s2)

# compute constrained solution
# sxtentativexx constrained
ardvw02 = a2r2 / (4 * v * w)
minL, = (B/w) / (1 + ardvw02)
maxL = (math.sqrt (sl+sl+4+4*xs2)—sl)/(2*s2) #highest possible L wvalue (asymptote)
hmax = (B/v) * ardvw02 / (1 + ardvw02)
#HH#old appraoch

WW2 = WHW

v04 = Bx«B

v05 = 1.0/w

v06 = 1.0/s2

v07 = slxw

v08 = 1.0 / ww2

$2s2i = 1.0 / (s2xs2)

v10 = —(Bxs2)

vll = 2x%(—1.0/3)

v12 = 2xx(—2.0/3)

v13 = s2xvxdd2

v1d = sl*x2xvxdd2

vls = v07 + v10

v16 = 4xs1+Bxv1l3

v17 = vl1dsw

v1l8 = —v17

v19 = v15*%x2

v20 = —4xww2xa2r2
v21l = —4xBxa2r2x*v07

v22 = s2x*xa2r2xv04

v23 = v13 — a2r2xw

v24 = 1.0/v23

v25 = sl*xBxa2r2 + v14 + 4xa2r2*w

v26 = slsww2xa2r2 + Bxs2**x2xvxdd2 — v07*v13 4+ a2r2xv10*w
v27 = —108%82%v04*xv23%xVv25*x*x2xw

v28 = v16 + v18 4+ v20 + v21 + v22

v29 = 4xww2xa2r2 + 4xBxa2r2xv07 — 4xsl*Bxv13 + v17 — v22
v30 = —432%a2r2*xv04*xv26*xx2

v31l = (2%B%a2r2%v07 — 2xs1*Bxv13 4+ v18 + v20 + v22)%x2
v32 = 2xv28x%x%3

v33 = —(v05%v06+v24xv29)/4.0

v34 = —288%(s2xa2r2xv04 + v16 + v18 + v20 + v21)*v22%xv23*w
v35 = —36xBxv25%xv26%xv28

v36 = —4x(—12 *B*xv25%v26 + v28%%2 + 48*%v22%xv23%w)**3

v37 = v27 + v30 + v32 + v34 + v35
v38 = np.sqrt(v36 + v37*x%2)
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v39 = np.sqrt ((v27 + v30 + v32 + v34 + v35)x%2 + v36) + v37

v40 = v39xx(1/float (3))

val = v39#x(—1/float (3))

v42 = (v08%s2s2i%v19)/4.0 — (v05%xv06xv24xv28)/12.0 + v33 — \

(v05%v06+v1lxv24xv40)/float (12) — (v05xv06xv12%v24%v31xv4l)/6.0

L_c-old = (v05%v06*(3*Bxs2 — 3xv07— 6%s2xnp.sqrt(v42)sw +
6xs2xnp.sqrt ((v08xs2s2ixv19)/float (2) +
(vO5xv06%xv24*v28)/float (12) + v33 +
(v05+v06xv11lxv24x*xv40)/float (12) +
(vO5%v06xv12%v24*v3lxv4l)/float (6) —
(2%B*v05%v06%v24xv25 + v08%s2s2i%v15xv24%v29 —
v15%%3/(s2*x3%xwxx3))/(4*np.sqrt(v42)))xw))/float (12)

#H## new approach

#notation

bbw = B/w

bw2 = bbw * bbw

bw3 = bw2 * bbw

bw4 = bw2 * bw2

q0 = math.sqrt(w/v)/dar

q0 * q0

q4d = q2 * g2

q6 = q4 * q2

sl2bw = s1/s2 — bbw

Q
o
Il

#L1

Ll = —(1./4.)*s12bw

#L2

L2cl = 2x(—(sl*%3%(sl + 2xbbwxs2)*%3) 4+ qb6+(—4 + 2xbbwksl + bw2xs2)*%3

2
+ 3#q4*(2+slxx2x(—8 + bbwxsl*(8 + 7xbbwxsl))
+ 8xbbwxsl*(—4 + bbwx*sl*(14 + 3xbbwksl))*s2
+ bw3#s1*(160 + 9xbbwksl)xs2+x2 — 2xbwdx(—36 + bbwxsl)*s2x%3)
+ 3%xg2#(2%sl*x4x(—2 + bbwxsl) — bbwxsl**3%(16 + 9xbbwksl)*xs2
— 8xbw2ksl*%2x(11 + 3xbbwksl)*s2%x2
2xbw3xs1 % (72 4 Txbbwxsl)*s2%%3 — T2xbwdxs2x%4))
#L2c21 = —4 % (sl1%(sl + 2xbbwxs2) — q2x(—4 + 2xbbwksl + bw2xs2))*%6
sqrtneglL2c2i = 2 % (slx(sl + 2xbbw#s2) — q2x(—4 + 2xbbw*sl + bw2xs2))xx3
#print "L2c2i,L2cl,L2c2i + L2c1xL2cl1”, L2c2i, L2cl, L2c2i + L2cixL2cl
try:
#L2c2 = math. sqrt (L2c2i + L2c1%L2cl) #can fail due to rounding error or overflow
L2c¢2 = math.sqrt ((L2cl+sqrtneglL2c2i)*(L2cl—sqrtnegl2c2i)) #can fail due to rounding error
except ValueError:
msg = "L2C2 ValueError: v={}, w={}, rho={}: ” .format(v, w, rho)
logging .info (msg)
print (msg)
print (L2cl,sqrtnegL2c2i)
assert np.allclose (L2cl,abs(sqrtnegL2c2i))
L2c2 =0
L2c = L2cl 4 L2c2
L2a = 8%q2 + 8xbbwxq2xsl + 2xsl*xsl — 2xbw2xq2%xs2 — 8xbbwxslx*xs2
L2b = (—4%q2 + 2xbbw*q2xsl — slxsl + bw2%xq2%s2 — 2xbbw¥sl*s2)xx*2

ptl = (1./4.)*s12bwx%2 + L2a/(12%(q2 — s2)%s2)

pt2 = (1./(12%(q2 — s2)%s2))*(2*x(1./3.)xL2b/L2c*x(1./3.) + 2xx(—1./3.)xL2cxx*(1./3.))
L2 = —(1./2.)*math.sqrt (ptl + pt2)

#L3

L3a = L2a/(—2%(q2 — s2)*s2)
pt3 = (—2xbbwx(4%xq2 + bbwxq2*sl + slxsl)/((q2 — s2)*s2) — s12bw=*%3 + sl2bwxL3a)/(8+L2)
discL3 = 2%xptl — pt2 + pt3
if discL3 < 0: #should only happen via rounding error
print (" problem with discL3 {}”.format(discL3))
#:todo: replace the following, which can fail numerically because of subtractve cancellatio;
#add a better test
#assert np.allclose (discL3, 0), 7{}”.format(discL3)
discL3 = 0
L3 = (1./2.)*math.sqrt(discL3)
#old wversion (kept for reference):
#L3 = (1./2.)xmath. sqrt (2xptl — pt2 — (—(( 2xbbwx(4xq2 + bbwxq2xsl + slxsl))
# /((q2 — s2)xs2)) — s12bw*x3 + s12bwxL8a)/(—8xL2))
L.c = L1 + L2 + L3 #constrained optimum
if math.isnan(L_c) or (v<le—8 or w<le—8) or __debug__:
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def

obj2min = lambda L: B 4+ K — Dxmath.sqrt(1—sl*L—s2xLxL) — vxhbar — Asrhosmath.sqrt (L*(B—wxL)/v)

numlL = fminbound (obj2min, 0, (math.sqrt(slssl+4xs2)—sl)/(2xs2))
if numL > maxL:
msg = ”\neksupp2 = {{v—>{v}, w—>{w}, \\[Rho]->{rho}, hbar—>{hbar}, k—>{k}, bb—>{bb}}}”
msg = msg.format (v=v ,w=w, rho=rho , hbar=hbar , k=K, bb=B)
msg += ”should have numL={} < maxL={}".format (numL, maxL)
logging . warn (msg)
assert np.allclose (numL, maxL)
numlL = maxL — le—12 #:note: HACK! (just worrying that bound not tightly enforced)
if math.isnan(L_c) or (v<le—8 or w<le—8):
L_c¢c = numL
msg = "new L_c calculation failed; use numL”
msg += 7 ({numL})” . format (numL=numL)
print msg
logging . info (msg)
elif __debug__:
assert np.allclose(L.c, numL), ”{} vs {}+{}+{}”.format(numL, L1, L2, L3) + msg
if not math.isnan(L_c_old):
assert np.allclose(L.c, L_c_old), "{} vs {}+{}+{}”.format(L_c_old, L1, L2, L3)
assert np.allclose (L_c_old ,numL)
else:
msg = "old L_c calculation failed”
logging . info (msg)
print ’v19:{v19}, v39:{v39}, v42:{v42}, B:{B}’ .format(v19=v19,v39=v39, v42=v42 B=B)
msg = "L_c_old={L} ,numL={numL}” . format (L=L_c_old ,numl=numlL)
print msg
logging . info (msg)
assert L_c > minL, ”constrained solution {} should exceed {}.”.format(L_c,minL)
h.d = (B — w«L_c)/v
if h.d > hmax: #should only happen from rounding error
assert np.allclose (hmax/h_.d,1.0), "{} vs. {}”.format(h_d, hmax)

h_d = hmax
#:mnote: set implied Lagrange multiplier
result [’lmda’] = (AxL_cx*(0.5)*rho)/(2xh_d**(0.5)*v) — 1

assert L_c>=0, 'L_c={} should be nonnegative’.format(L_c)
ts_c = sl+xL_c 4+ s2xL_cxL_c
if ts_.c > 1: #should only happen due to rounding error
assert np.allclose (L_c,maxL)
msg = 'LG: L_c={0}; maxL={1}".format (L_c ,maxL)
logging . warn (msg)
print (msg)
assert np.allclose(ts_c, 1.0)
L.c = maxL — le—12 #:note: HACK! but o/w rounding error can cause ts>I
ts_.c = slxL_c + s2xL_c*L_c
assert ts_c < 1
assert sl*xL_c 4+ s2xL_cxL_c <= 1, ’'L_c={0} yields ts={1}’.format(L_c,sl*L_c 4+ s2xL_cxL_c)
assert h.d>=0, 'h_d={}’.format(h_d)

result [’L.d’] = L.d = L_c

result [’h.d’] = h.d

result [7tr.d’] = tr.d = 1 — slxL.d — s2xL_d«L._d

assert tr_d>=0, ’tr_.d={}’.format(tr_d)

result [’q-d’] = q-d = A % math.sqrt(h-d*L_d)

result [’Y.d’] = Y.d = rhoxq.d — v*(h_.d — hbar) — wxL.d — K
result [’U.d’] = Y.d + Dsmath.sqrt (tr-d)

return result
small_capitalist (agent, B, K, v, w, rho, params):
?7? Return dict of agent attributes,

including pclass, factor demands, and welfare.

Parameters

B : float

exogenous working capital (may be negative due to K)
hbar : float

Quantity of land owned
K : float

Fixed set—up costs (equals KT or KM)
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rho : float
Premium associated with participation in modern value chain

v : float

Price of land
w : float

Price of labor
params : dict

Model parameters, especially sl, s2, D, KM, KT.
(see distribution.py for the definitions)

Returns

result : dict
keys are pclass ,tr.d ,tw.d,th.d,L.d,h.d,q.-d,Y.d,lmda,U._d

(See the module documentation for definitions.)
N NN

assert (K=params|[’KI’] or K—=—params|[ KM’])
#IODO: check that it pays to produce at all (rho must be high enough)
hbar, A = agent.hbar, agent.A

sl, s2, D = params[’sl’], params[’s2’], params|[’D’]
result = dict(pclass=3, tw.d=0, constraints=0)
#NEW approach

#1. FIRST: check that it is profitable to hire labor
dar =D / (A % rho)

aa2 = AxA
rr2 = rhoxrho
a2r2 = aa2xrr2

ardvw02 = a2r2 / (4 * v * w)

#original formulation
R.oc = (D##2xvik(—2%s2+Dx%2%v 4+ Ax*2xrho**2x(—2xB*xs2 + w — slsw) +
2+«np.sqrt (s2x+2% (Axx2xBkrho**x2 + Dxx2xv)**x2 +
Axx2%(—1 + sl)xs2xrho**2x(A*+2+«Bxrho**2 + D*%2%v)%w +
Axxdx((—1 4+ s1)*%2 + 3xs2)srhoxxdsxw*x2)))/(3xAxxdxrho**xdswk*2)
Ld.c = (s2#D**2%v 4+ Axx2xrho**2x(B*xs2 4+ w — slxw) —
np.sqrt (s2x%2% (Axx2xBkrho**2 + Dxx2xv)**x2 +
Axx2%(—1 + s1)xs2xrho**2x(A*+2+«Bxrho**2 + D**2x%v)*w +
Axxdx((—1 + sl)**%2 + 3*s2)srho**xdsxwx%2))/(3xAxx2xs2xrho**2xw)

#preferred formulation

x = (B + darxdarxv) / w

L.d = (1—sl4s2%x — math.sqrt ((1—sl—x*s2)*%2+3%xs24+(1—s1)*x*s2))/(3%s2)
tr.d = (1—s1—2xs2xL_d)*darxdar*v/w

#yet another (Mma based) formulation
L201506 = (D**2%s2x%v
+ As*2xrho*#2%(Bxs2 + w — slxw)
— math.sqrt (3xA*x*2xrho**2xs2xwx (Dxx2x(—1 4+ sl)xv + A*x2xrhoxx2x(Bx(—1 + sl1) + w))
4+ (D**2%s2%v + Axx2xrho**2%(Bxs2 + w — sl*w))*x2)
) / (3.%xAx*x2xrho*%2%s2%w)
tr201506 = (Ds*2kvx*(
—2xDx % 2% 52 %V
+ As*2srho**2x(—2xBxs2 + w — slx*w)
+ 2xmath.sqrt (3*xAs+2+xrho**2%s2*w
* (Ds*x2x(—1 + sl)*v 4+ Ax*2xrho**2x(Bx(—1 + sl1) + w))
+ (D*%2%82%v + Asx2xrho*+2%(Bxs2 + w — slxw))*%2

)

) / (3.xAxxdxrho*xdsxwx+2)

#these are complicated enough to check various expressions against each other:
assert np.allclose (L201506, Ld-c)

assert np.allclose(L.d, Ld.c)

assert np.allclose (tr201506, R_c)

assert np.allclose (tr-d, R_c)

h.d = (B - w«Ld) / v
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assert B< ((1 — sl)*w)/(2%s2) + (A*Ax(1—sl)*(1—sl)xrhoxrho)/(16*s2xv) — (3xvswiw)/(AxAxs2+rhoxrho) \
+ (rhoxrho*AxAx(1—tr_d))/(4xv), ”"see solutions” #:note: xunconstrained* tr_d here
#TODO: Simplify Imda?
Imda = np.sqrt (vewsx2+(—2xs2xD**2%v + Asxx2xrho*+2%(—2+%Bxs2 + w — slxw) +
2*np.sqrt(52**2*(A**2*B*rho**2 + Dxx2xv)x%x2 +
Axx2%(—1 + sl)xs2xrho**2x(A%+2+«Bxrho**2 + D*%2xv)*w +
Axxdx((—1 + s1)x%2 + 3*s2)xrho*x*x4dsxwx*%2)))/(2+np.sqrt (3)«vswk*2) — 1
if L.d < 0:
msg = "L={L}” .format (L=L_d)
logging . warn (msg)
print "LG:”, msg

Ld=0
if tr.d < O:
msg = "tr.d={tr.d}” .format(tr_d=tr_d)

logging . warn (msg)
print "LG:”, msg
trod =0
if tr_d > 1:
result [ ’constraints’] |= constraints[’R1’]
logging .warn( 'LG: time constraint limits tr_-d to 1.7)
print ('LG: time constraint limits tr_d to 1.7)
tr.d =1
if h.d < 0:
msg = "h={h}” .format (h=h_d)
logging . warn (msg)
print "LG:” , msg

h.d =0
ts.d = slxL_.d + s2xL_dxL_d
th.d =1 — tr.d — ts-d
if th.d < 0:

msg = "th_d={th_d}” .format(th_d=th_d)
logging . warn (msg)

print "LG:”, msg

th.d =0

result [’L.d’] = L.d

assert L.d>=0, 'L.d={}’.format(L_d)

result [7tr_d’] = tr.d

assert I1>=tr_.d>=0, 'tr_.d={}’.format(tr_d)

result [’h_.d’] = h.d

assert h.d>=0, 'h_d={}’.format(h_d)

result [’th_.d’] = th.d

assert 1>=th_.d>=0, ’th_d={}’.format(th_d)

result [7ts_d’] = ts_d

assert 1>=ts_d>=0, ’ts_.d={}’.format(th_d)

result [’q.d’] = q-d = A % math.sqrt (h-d*(th_d+L_.d))
result [’Y.d’] = Y.d = rhoxq.d — vx(h_.d—hbar) — wxL.d — K
result [’U.d’] = Y.d + Dsmath.sqrt (tr-d)
result [ ’lmda’] = lmda

return result

def self_cultivator (agent, B, K, v, w, rho, params):
?7” Return dict of agent attributes,
including pclass, factor demands, and welfare.

Parameters

hbar : float
Quantity of land owned

B : float
exogenous working capital (may be negative due to K)
K : float

Fixed set—up costs (equals KT or KM)
rho : float
Premium associated with participation in modern value chain

v : float
Price of land
w : float

Price of labor
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params : dict
Model parameters, especially sl, s2, D, KM, KT.
Here we need A and D.
(See distribution.py for the definitions)

Returns

result : dict
keys are pclass ,tr.d ,tw.d,th.d,L.d,h.d,q.d,Y.d,lmda,U._d
(See the module documentation for definitions.)
assert (K=params|[’'KT’]| or K—params|[ 'KM’])
assert B>0, ”if B<=0, cannot cultivate”
assert v>0, ”7if v<=0, problem ill defined; solutions nonsense”
hbar = agent.hbar
A = agent.A #Productivity parameter on Cobb—Douglas production function
D = params|’'D’]
dar =D / (rho * A)
result = dict(pclass=2, tw.d=0, L.d=0, constraints=0)
#CONSTRAINED and UNCONSTRAINED SOLUTIONS
h_c = B/v
h_u = (A*Axrhoxrho)/(4*xvv) — darxdar #unconstrained
assert (h_u > 0)
if hou <= 0: #does not pay to produce, delegate to PAL
result .update(pure_laborer (agent, v, w, params)) #sets pclass=0

result ['Ud’] =K
result [ ’lmda’] = 0
#result [’ constraints '] |= constraints[’R1’]

logging .warn(’self_cultivator: delegate to pal’)
# note: th_d—>0 as h—>0 (in both cases)
assert (h_c < h_u) #usual case: working capital constraint binds
assert 0 < B < (rhoxrhoxAxA/(4*v) — darxdar*v), ”violated upper bound on B for constraint to bind”
result [ ’constraints’] |= constraints[’'B’]
h.d = h_c
th.d = h_c/(darxdar+h_c) #constrained value
assert np.allclose (th_d, AxAxh_d*rhoxrho /(D«D+A*Axh_d*rho*rho)) #0 < th_-d < 1
Imda = Axrho /(2 xvsxmath.sqrt(darxdar4B/v)) — 1
Imda02 = (Ax*2xrho*%2)/(2xv*x(0.5)*(A*xx2xBsxrho**2 + v«D*%2)*x(0.5)) — 1
Imda03 = 0.5%xAxrho*math.sqrt (th_d/(v«B)) — 1
if not np.allclose (Imda, 1mda02, lmda03):
print ”"sign problem? {} vs {} vs {}”.format(lmda,lmda02, lmda03)
print A, rho, v, B
raise ValueError ()
#record SC solutions

if result[’pclass’] = 2: #o.w. delegated to PAL
result [’h.d’] = h_.d
result ["th.d’] = th_d
result ["tr.d’] = tr.d = 1 — th.d #1 if h=0
result[’q-d’] = q-d = A * math.sqrt (h.d«th_.d) #0 if h=0
result [’Y.d’] = Y.d = rhoxq.d + v«(hbar — h.d) — K

if h.c > h_u:
assert np.allclose (Y.d, th_d*AxAxrhoxrho/(4%*v) + vxhbar — K)

result [’U.d’] = Y.d + Dsmath.sqrt(tr_d)
result [ ’lmda’] = lmda
else:
assert result[’pclass’] = 0, ”only delegation is to PAL”

return result

def laborer_cultivator (agent, B, K, v, w, rho, params):
7?7?” Return dict of agent attributes,
including pclass, factor demands, and welfare.

Parameters
hbar : float
Quantity of land owned

B : float
exogenous working capital (may be negative due to K)
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K : float
Fixed set—up costs
rho : float
Premium associated with participation in modern value chain

v : float

Price of land
w : float

Price of labor
params : dict

Model parameters, especially sl, s2, D, KM, KT.
Here we need A and D.
(See distribution.py for the definitions)

Returns

result : dict, laborer_cultivator’s attributes ,
keys are pclass ,tr.d ,tw.d,th_.d,L.d,h.d,q-d,Y.d,lmda,U.d
(See the module documentation for definitions.)
assert (K=params|[’KI’] or K=params|[ KM’])
Bl, B2, B3 = bl23(agent, K, v, w, rho, params)
#B < Bl = w(l—tr_d) here
assert B<B1l, ”caller should enforce B<B1”
hbar = agent.hbar
A = agent.A #Productivity parameter on Cobb—Douglas production function
D = params|’'D’]
dar =D / (rho * A)
result = dict(pclass=1, L.d=0, constraints=0)
#if it pays to produce them capital comstraint binds, otherwise
if (rho * A <= 2 x math.sqrt(vsw)) or (B+B1<=0): #doesn 't pay to cultivate (see below)
result .update(pure_laborer (agent, v, w, params))
#fized costs already incurred

result [’U.d’] =K
result [’Y.d’] =K
result [ ’lmda’] = 0 #:note: perhaps None wd be more informative?
if (rho * A <= 2 % math.sqrt(v«w)): #this happens a lot!
result [ ’constraints’] |= constraints[’rA’]
msg = "LC: rho*A too low to cultivate; delegate to PL.”

logging .debug (msg)
if (B+B1<=0): #happens *xvery* often (at least out of eq)

result [ ’constraints’] |= constraints|’ell0’]
msg = "LC: can’t afford land to cultivate; delegate to PL.”
logging .debug (msg)

else: #:note: if it pays to be an LC, working capital constraint binds

tr.d, tw.d, th.d, h.d =1 — Bl/w, (B1-B)/(2%*w), (B14B)/(2xw), (BI4B)/(2%v)
#as —B1 < B < B1, all wvars are properly bounded
assert np.allclose ([tr-d ,tw_d,th_d,h_d],[(v/w)*xdarsdar,(1—tr-d-B/w)/2,(1—tr_d4B/w)/2,(w/v)*th_d])

result ["tr.d’] = tr_d

result ["tw_d’] = tw.d

result [’th.d’] = th_.d

result [’h.d’] = h.d

assert np.allclose (vxh.d, wxth_d) #equal ezpenditure on each factor
result[’q-d’] = q-d = A * math.sqrt (h.d+«th_d)

result [’Y.d’] = Y.d = rhoxq-d + wxtw_d + v*(hbar—h_d) — K

assert np.allclose(q.d, Ax(1 — tr_d + B/w)xmath.sqrt(w/v)/2., Ax*(Bl 4+ B)/math.sqrt (4*xwx*v))
assert np.allclose(Y.d, 0.5%xAxrho*(B+wx(1—tr_d))/math.sqrt(v«w) + vshbar — B— K)
result ['U.d’] = Y.d + Dxmath.sqrt (tr_d)
result [ ’Imda’] = Asrho/(2+math.sqrt (vsw))—1
return result

def pure_laborer (agent, v, w, params):
?7”” Return dict of agent attributes,
including pclass, factor demands, and welfare.

Parameters

agent : Producer or Agtlnfo
we need access to the hbar attribute
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(quantity of land owned)
v : float
price of land
w @ float
price of labor
params : dict
model parameters;
we just need access to D.
(see baseline.ini for the definitions)

Returns

result : dict, pure_laborer’s attributes,
keys are pclass ,tr.d ,tw.d,th.d,L.d,h.d,q-d,Y.d,lmda,U._d
(See the module documentation for definitions.)
assert (v > 0 and w > 0),)\
?negative factor prices: v={}, w={}".format(v,w)
result = dict(pclass=0
,K=0
,th_d=0
,ts-d=0
,L_d=0
,h_d=0
,q-d=0
,constraints=0
)
D = params|’D’] #Parameter on sub—utility (of leisure) function
d2w =D / (2.0 * w)
#Hoptimum to pure laborer’s objective, subject to tr_d<=I
if (d2w < 1.0):
tr.d = d2w x d2w

else:

tr.d = 1.0

result [ ’constraints’] |= constraints[’R1’]
result [7tr-d’] = tr-d
result [’tw.d’] = tw.d =1 — tr_.d #PL has only two uses of time
result[’q-d’] = 0.0
result [’Y.d’] = Y.d = wxtw_d + v*agent.hbar #no production by PL
Utr = Dxd2w if (tr_d<1) else Y.d + D #faster than sqrt(tr_-d)
result [’Ud’] = Y.d + Utr
result [ ’lmda’] = None #capital constraint irrelevant to PL

return result
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