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Abstract. In this paper we couple a spatiotemporal air quality model
of ozone concentration levels with the synthetic information model of the
Houston Metropolitan Area. While traditional approaches often aggre-
gate the population, activities, or concentration levels of the pollutant
across space and/or time, we utilize high performance computing and
statistical learning tools to maintain the granularity of the data, allow-
ing us to attach specific exposure levels to the synthetic individuals based
on the exact time of day and geolocation of the activity. We demonstrate
that maintaining the granularity of the data is critical to more accurately
reflect the heterogeneous exposure levels of the population across time
within the greater Houston area. We find that individuals in the same
zip code, neighborhood, block, and even household have varying levels
of exposure depending on their activity patterns throughout the day.
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1 Introduction

It has been demonstrated that localized specific exposures to ozone can dramat-
ically increase health risks for cardiac events and asthma [4, 5, 20]. For example,
it was found that an increase of 20 parts per billion (ppb) in ozone (O3) over
a period of one to three hours is associated with a 4.4% increased risk of hav-
ing an out-of-hospital cardiac arrest, for which 90% of cases result in death [4].
Many studies, however, use 12- or 24-hour activity summaries [10, 12, 16]. How-
ever, aggregating time to daily periods miss important details such as variations
in ozone levels across physical space and time, which can significantly impact
individual and population exposure levels to ozone.

In this paper, we couple a spatiotemporal air quality model of ozone concen-
tration levels (O3 ppb hourly) across the metropolitan area of Houston, Texas
to a data-informed synthetic information model. It overcomes the limitations of
traditional approaches as it is informed by how people move through their activi-
ties during the day, allowing us to attach specific exposure levels to the synthetic
individuals based on the exact geolocation of the activity and time of day. The
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result is a step towards an in silico experimental platform to study social be-
havior, including interaction with the environment. While previous models have
calculated personal exposure, the space and time coupling makes this model
unique. In addition, earlier models often aggregated exposure levels to calculate
a population exposure, but computational resources have given us the ability to
maintain the granularity of the data at the individual level across both space and
time. Our contribution is the adoption of the synthetic information approach to
understand the impact of air quality over physical space and time on individual
exposure levels. This requires a richer characterization of the synthetic individ-
uals and their activity sequences than in current models. We demonstrate that
maintaining the granularity of the data is critical to more accurately reflect the
heterogeneous exposure levels of the population within the Houston Metropoli-
tan Area. We find that individuals in the same zip code, neighborhood, block,
and even household have varying levels of exposure depending on their activity
patterns throughout the day.

2 Background

Exposure is the contact an individual has with a pollutant, and is a function of
the concentration of the pollutant and the time exposed to the pollutant [25]. An
individual’s exposure has often been assumed to be proportional to the ambi-
ent concentration of the air pollutant. However, an individual’s activity patterns
across both space and time must be accounted for in order to determine a more
accurate representation of the magnitude, frequency, and the duration of indi-
vidual’s exposure to a pollutant [29].

Community-based studies [21, 23, 31] identify a significant impact on health
from air pollution levels but do not directly measure individual exposure. Other
studies focus on direct measurement of human exposure through personal mon-
itors or home-based centers, but the cost, measurement accuracy, and logistics
limit their use on a scale large enough to provide community-wide understanding
of exposure [30, 28]. Earlier models that sought to attach air pollution exposure
to populations, took a group-level approach, whether based on the demograph-
ics of a subset of individuals, the geographic location of homes and activities,
or a set of micro-environments. While some of these studies modeled represen-
tative individuals [11, 2, 19], they either stopped short in their ability to trace
individuals throughout the course of the day or in modeling a representative
population of the geographic location in question. For instance, a variety of En-
vironmental Protection Agency (EPA) exposure models (e.g., APEX [26] and
SHEDS [27]) utilize the Consolidated Human Activity Database, a repository
of harmonized human activity data. In this database, a person’s exposure is
obtained by mapping the activities reported in the surveys into several micro-
environment categories, each with an estimated exposure rate. In contrast, we
will map the reported activities to very granular geolocations accounting for
the time of day. Other exposure models have focused on calculating personal
exposure to emissions and other pollutants while traveling, accounting for fac-
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tors such as transportation mode, vehicle type, and transportation routes [7, 9].
While these models seek to accurately reflect exposure during travel, they do
not account for the individual’s full course of activities.

Moving away from aggregate-level exposure calculations and accounting for
an individual’s full course of activities, more recent exposure models have de-
veloped synthetic populations to represent each individual in a geographic lo-
cation. Traditional synthetic population models, however, are limited in their
use for estimating environmental exposure to contaminants that vary over both
space and time. These methods aggregate activities into percent time (e.g., per-
cent of day) and allocate the aggregated time to an activity location [13, 17, 32].
Coupling these models to environmental exposure will mask important social
determinants of health. As an example, a study of Sydney, Australia [18] used
traditional models with single daily exposure values, and coupled the percent
time spent at various locations to these daily average exposure levels. However,
that level of granularity is not enough for differentiating important health effects
related to air quality. In contrast to this study, our research attaches actual ex-
posure values to the synthetic individuals continuously over space and time, i.e.,
at specific geographic locations and specific points in time. It has been shown
in many studies [4, 5, 20] that level of aggregation is an important consideration
as it can mask important health effects that could be translated into life saving
behavioral and policy changes.

Developing an in silico experimental platform will allow us to study dis-
parities in exposure to air pollution at a level of detail not possible with other
models. This level of granularity will improve our understanding of the exposure
pattern differences for sensitive and socioeconomically disadvantaged subpopu-
lations compared to the population at-large. The in silico platform will enable
more in-depth analysis than is currently possible with existing approaches of
populations at risk of environmental exposure (air quality).

3 Methodology

In this section we describe the current state of development of the in silico exper-
imental platform, a platform that couples a synthetic information representation
of the residents in the Houston Metropolitan Area to an air quality spatiotempo-
ral model. We begin by describing the synthetic information model developed at
Virginia Tech [15] in Section 3.1. It includes socio-demographically relevant ac-
tivity sequences and the movement of each individual in the population through
their sequences second-by-second during the day. This allows aggregation of time
intervals to match the environmental quality data (e.g., hourly intervals), which
is explained in Section 3.2. Finally, we demonstrate the methodology to deter-
mine spatiotemporal individual-level exposure to ozone in Section 3.3. This in
silico platform provides the exposure profiles for the roughly 4.9 million syn-
thetic individuals in the Houston Metropolitan Area. Figure 1 illustrates the
conceptual model of the current state of the in silico experimental platform.
This platform will provide an integrated database that can be used and reused
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for the analysis of various studies related to the synthetic population and air
quality.

3.1 Synthetic population information model
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Fig. 1. Conceptual model of the current state of the
in silico experimental platform. The bottom layer
represents the synthetic information model, the mid-
dle layer represents the air quality model, and the
top layer represents the personal exposure model.

The first step in creating the
in silico experimental plat-
form is to generate a syn-
thetic population of the Hous-
ton Metropolitan Area. The
synthetic information is a set
of synthetic people and house-
holds located geographically,
each associated with demo-
graphic variables. It is cre-
ated by integrating a variety
of databases from commercial
and public sources, including
statistical surveys, adminis-
trative data, and data on the
built environment (e.g., build-
ings, roads, and land use),
through a process that pre-
serves the confidentiality of
the individuals in the original
data sets, yet produces realis-
tic attributes and demograph-
ics for synthetic individuals.

The steps to this syn-
thetic information generation
include (1) population syn-
thesis, in which a synthetic
representation of each indi-
vidual and household in a region is created using socioeconomic characteristics
from census data, (2) activity assignments, in which each synthetic person in a
household is assigned a set of activities to perform during the day, along with
start and end times based on activity or time-use survey data; and (3) location
choice, in which an appropriate real location is chosen for each activity for every
synthetic person based on data sources, such as land use patterns, tax data, or
commercial location data. The data sources used in the creation of the Houston
synthetic population are given in Table 1.

The American Community Survey (ACS) provides tables of distributions on
demographic characteristics, such as age, gender, household income, and house-
hold size, which are referred to as marginal distributions. Joint demographic
distributions are reconstructed from these marginal distributions using an iter-
ative proportional fitting technique [1]. The process ensures that the synthetic
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Table 1. Houston Metropolitan Area synthetic information data sources.

Data Source Description

US Census TIGER Data True population geographic boundaries and
demographics to be matched by synthetic population.

US Census American Primary source of data used to build the synthetic
Community Survey (ACS) set of people with the aggregate statistics matching
(2005 to 2009) US Census marginals.

National Household Travel Data on travel behavior and activity sequences.
Survey (NHTS)

Dun & Bradstreet (D&B) Describes home locations and retail locations -
used to locate activities.

HERE (formerly NAVTEQ) Road Network and transportation map.

National Center for Education Data on school locations.
Statistics (NCES)/

population matches the marginals of the true population. Furthermore, because
the distribution of the various demographic variables are generated from the
ACS they are ensured to be representative of the true population. Synthetic
individuals are placed in a household with other synthetic individuals. Each
household is then located geographically using land-use data and data pertain-
ing to businesses and transportation networks. Realistic activity patterns and
their locations are then added. A set of activities for an average day is determined
by analyzing the activity patterns in the National Household Travel Survey and
linking these patterns to the socio-demographic composition of the households
and individuals within the households.

The Houston Metropolitan Area synthetic population was extracted from
a synthetic population developed for the entire state of Texas. Any synthetic
individual with either a home or activity location within Harris County, TX
was included. This resulted in approximately 4.9 million individuals grouped
into 1.8 million households. Synthetic individuals can perform up to 6 different
types of activities including travel; activity types can be performed multiple
times by the same individual on the same day. Activities occur in 1.2 million
different activity locations (895 thousand housing locations, 166 thousand work
locations, 37 thousand shopping locations, 4 thousand schools, and 112 thousand
other locations). Figure 2 shows the household and activity locations across the
region, as well as an example set of activities for one household.

3.2 The air quality model

According to the Texas Commission on Environmental Quality (TCEQ), the
air quality in Houston, TX is monitored more closely and analyzed with more
intensity than perhaps anywhere in the country — if not in the world [24]. The
Houston area has an extensive air monitoring network including 47 monitors
measuring ozone. Monitor data, extending back more than tens years at some
locations, are collected hourly using EPA federal reference methods [26] and
validated by TCEQ. One hour ambient meteorological (temperature, relative
humidity, and wind speed) data are available through the monitors. For this
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Fig. 2. Activity Locations. (a) The red points represent the 1.2 million activity lo-
cations for the synthetic population and the blue points represent the 895 thousand
housing locations. The shadow is the boundary of Harris County, Texas. (b) A “close-
up” of the activity patterns on an average day for a two-person household.

initial model, hourly recordings on August 26, 2008, of ozone concentration levels
(O3 ppb hourly) across 39 EPA monitors in the Houston Metropolitan Area were
used.

The first step to coupling the environmental pollutant data with the synthetic
information is to assign the hourly ozone concentration to each activity location
(e.g., home, work, school, shopping, travel). This was done using the inverse
weighted distance from each location to the 39 monitors, a standard method for
assigning ozone concentration [8, 14, 22]. Given that mj(t) is the concentration
measured by monitor j ∈ {1, ..., n} at time t, the pollutant concentration ci at
each activity location i at time t ∈ {1, ..., 24} is calculated as follows:

ci(t) =

n∑
j=1

1
d2
ij
mj(t)∑n

j=1
1
d2
ij

, (1)

where dij is the great circle distance between location i and monitor j. Using
the geo-coordinates (i.e., latitude and longitude) of the monitoring stations and
the activity locations, dij is calculated as follows:

dij = r ∗ arccos(sinφ1sinφ2 + cosφ1cosφ2cos(|λ2 − λ1|)), (2)

where φ1λ1 and φ2λ2 are the latitudes and longitude, respectively, of points 1
and 2 and r is the Earth’s mean radius. The result is a q x p matrix, where q is
the number of activity locations (approximately 1.2 million) and p is the number
of hours in a day (24). At this point, each activity location for each hour of the
day has an assigned ozone concentration level.

3.3 The personal exposure model

The representative day and corresponding activity sequences of each synthetic
entity is linked in space and time to the corresponding ozone concentration levels.
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The personal exposure model is developed by coupling the air quality model with
the individual activity patterns from the synthetic information. Exposure to a
pollutant is a function of the concentration of that pollutant and time. Because
we are modeling each day using discrete time steps (i.e., in units of seconds), the
personal exposure eip for an individual synthetic person p at a visited activity
location i during the 24-hour sequence (86,400 seconds) is calculated as follows:

eip =
∑
tl<tk

ci(tl)[tk − tl], (3)

where ci(tl) is the concentration at activity location i at time tl and tk − tl is
the time person p spent at location i. We calculate eip for all activity locations
visited by person p during the day. Note that some activity locations may be
revisited at different times in the same day (e.g., home). The assignment of
exposure to travel is made by splitting the travel time between the origin and
destination activity locations. Therefore, travel exposure is calculated based on
the concentration of ozone at the origin and destination activity locations during
the time of travel.

4 Results

Previous studies have assumed that an individual’s location remains the same
throughout the day (i.e., individuals stay home) or have used 24-hour aggregate
pollutant concentration levels (see section 2). In the model presented here, we use
geolocated hourly levels of ozone concentration and allow individuals to move
through their time-sequenced activities. We find that exposure levels can be
quite different across Houston and even within neighborhoods and households.
The cumulative exposure distribution across the entire synthetic population with
homes in Harris County is shown in Figure 3, as well as a “close-up” for a single
neighborhood. This demonstrates that there is heterogeneity in exposure levels
within neighborhoods due to the fact that people move around during the day.
The platform also allows us to trace individuals over the course of the day.
Hourly exposure traces for two synthetic families are given in Figure 4. These
are two demographically similar families located in different parts of Houston.
This demonstrates that ozone exposure is heterogeneous even within household,
illustrating the significance of our research.

As has been shown in previous studies, increases in ozone levels over the
course of a few hours can have major health implications (see section 1), support-
ing the need for exposure calculations that are sufficiently granular. To see the
impact that modeling at different levels of resolution has on population exposure,
three scenarios are compared. Scenario 1 calculates exposure by using 24-hour
aggregate concentration and assumes individuals stay home all day. Scenario 2
calculates exposure by using the geolocated hourly concentration levels and as-
sumes individuals stay at home all day. Scenario 3 uses the geolocated hourly
concentrations for all of the activity sites and moves the individuals through
their time activity sequences for the day. This is the most realistic scenario, as
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it calculates exposure according to where people are physically located through-
out the day. Figure 5 gives the exposure traces for the synthetic population in
an area of Houston for one day using these scenarios. This demonstrates that
time sensitive exposures can be quite off when not accounting for actual activity
locations. While Scenarios 2 and 3 show similar patterns, Scenario 2 does not
capture the extreme values. Without the level of spatiotemporal resolution of
Scenario 3 we would not be able to capture the full spread of exposure, which
could be particularly important if these extreme values are experienced by the
sensitive population of Houston.

(a) (b)

Fig. 3. The cumulative exposure distributions for the synthetic population for August
26, 2008. (a) Shows the synthetic residents of Harris County. (b) A “close-up” of the
cumulative exposure for one neighborhood.

Fig. 4. Exposure traces for two synthetic families located in different parts of Houston
on August 26, 2008.
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(a)

(b)

(c)

Fig. 5. Hourly exposures for the synthetic population in zip code 77026 in Houston
calculated according to three scenarios, using ozone levels on August 26, 2008. (a)
Scenario 1 assumes 24-hour aggregate concentrations and individuals stay home. (b)
Scenario 2 allows geolocated concentrations to vary hourly and assumes individuals
stay home. (c) Scenario 3 allows geolocated concentrations to vary hourly and assumes
individuals move through their time-sequenced activities.
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5 Conclusion

In this paper, we coupled an air quality spatiotemporal model to the synthetic
information model of the Houston Metropolitan Area that captures the detailed
individual-level activities throughout the day. This allowed us to attach specific
exposure levels to the synthetic individuals based on the exact time of day, the
geolocation of the activity, and the condition of the physical environment. This
is crucial to better understanding exposure pattern heterogeneity. Models that
do not account for this level of granularity in space and time would be missing
important differences in the distribution of exposure in the population and within
neighborhoods, blocks, and even households.

In further work, we will couple the synthetic information to an improved spa-
tiotemporal ozone model developed by Ensor [3], which fully incorporates me-
teorology and provides estimates of ambient ozone levels continuously in space
and time. In addition, we will extend the model to different geographic areas,
beginning with the Washington, DC metropolitan area. For each region, we will
create a richer representation of the synthetic information model to capture key
features relevant to the social determinants of health and life style choices. We
will expand the socioeconomic representations of the individuals, such as educa-
tional attainment, occupation, and health insurance status, and their associated
set of activities that has relevance with respect to environmental exposure lev-
els, such as transportation mode, transportation route, and type of day (e.g.,
weekday versus weekend). Moreover, we will further characterize the condition
of activity locations to model ambient air quality transfer to indoor spaces, with
a focus on housing or building quality, sources of heating, building occupancy,
and land use (e.g., green space). Furthermore, we will generate multiple replica-
tions of the synthetic populations in order to better capture uncertainty across
many runs of the model. Finally, we will test potential intervention strategies by
conducting “what if” scenarios to inform policy. The platform will allow us to
explore the complex interplay of policies and incentive programs related to air
quality. Adjusting behavior of the synthetic population in response to a policy or
program proposal will generate new estimates of exposures that can be used to
compare to the original exposures. This will allow us to study policy alternatives
that aim to reduce time spent outside, such as the increase in the access of public
transportation, and more focused health alerts on bad ozone days. Moreover, it
will allow us to explore different individual behaviors in compliance with incen-
tive schemes based on individual characteristics, such as bus ticket vouchers for
disadvantaged populations in areas identified as high risk for ozone exposure.

The coupling of improved spatiotemporal air quality models with enhanced
synthetic information models will result in an in silico experimental platform
to study disparities in exposure to air pollution at a level of detail not possible
with other models. This level of granularity in the estimation of environmental
exposure will improve our understanding of the exposure pattern differences,
particularly for sensitive and socioeconomically disadvantaged subpopulations.
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