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Abstract. Traditionally, firm competition has been studied in contexts where the
product attribute space is assumed to be fixed. Thus, firms deploy their strategies
constrained by such a space. However, it is also true that firms exert influence on the
product attribute space by offering products with new attributes and variants. As a
result, the product attribute space endogenously changes as a consequence of firms’
actions. This works touches upon the co-evolution of the firm strategy and the product
space. Through a networked Cournot competition framework, we develop a computa-
tional model in which firms invest in new product variants that are characterized by
minimum differentiation with existing ones. That is, firms try to differentiate from
other variants, so a new market niche is created, but as minimum as possible so that
demand from closely similar existing variants can be “stolen”. We study the effects of
the evolving space on firm performance and how this dynamics affects and is affected
by firms’ adaptive behavior.

Keywords: Cournot competition, product attribute spaces, dimension-
ality, agent-based simulation

1 Background

Attribute spaces of positive integer dimensionality display how demand for, and
supply of, organizational services distribute over a number of attributes (dimen-
sions). The space can be a commodity space spun by product characteristics pro-
spective customers evaluate (Lancaster, 1966; Kim et al., 2007; Lacourbe et al., 2009;
Adner et al., 2014) or a political issue space within which political representation is
offered (Downs, 1957). In organization science, it can also be Blau-space spun by
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people’s socio-demographic characteristics that motivate their choices with respect
to organizational offerings (Boone et al., 2002; Hannan et al., 2007; McPherson,
1983, 2004). Economic and organizational research have already disclosed a number
of mechanisms regarding how changing integer dimensionality impacts upon market
outcomes (Irmen and Thisse, 1998; Péli and Nooteboom, 1999; Péli and Wit-
teloostuijn, 2009).

A persisting problem of multidimensional space representations is, however, that
real-world markets stay normally far from offering, or even recognizing, all analyti-
cally possible product feature combinations. Demand distributions over multidimen-
sional attribute spaces normally show a patchy pattern (cf. Bruggeman and Péli,
2014). This problem is even more salient when we consider the situation where
firms affect the shape of the product attribute space through price / quantity com-
petition and product differentiation. Therefore, resorting to a Cournot competition
framework, we attempt to understand the co-evolutionary implications of firms’
strategies and the product attribute space where firms are embedded in.

Dimensionality of attribute spaces is usually accounted for by the number of product
attributes relevant for potential customers (Lancaster, 1966). Given the fact that we
consider scenarios where not all possible attribute value configurations are available
at the same time, we have to take into account the non-integer nature of the prod-
uct attribute space dimensionality in our model. For such a purpose, we employ a
metric that we label “fraction dimension”. Our paper demonstrates that fraction
dimensionality, defined by the similarity dimension concept of Mandelbrot (1983), is
a useful modeling tool of product positioning in multidimensional markets. Using
fraction dimension as independent variable has already been shown contributing to
explain the fates of large and small scale firms over patchy demand landscapes (Gar-
cia-Diaz, 2008, Garcia-Diaz et al., 2008). As markets mature, increasing crowding
makes firms resorting to horizontal product differentiation (Eaton and Lipsey, 1989).
Accordingly, fraction dimension increases as proliferating demand patches make the
spotty scenery gradually saturated.

Our model reflects the fact that firms are constrained by the current product space
structure, but firms also shape such a space. Traditional models in the literature (cf.
Irmen and Thisse, 1998) consider the product space as given, but do not take into
account the effect of newly introduced products in shaping consumer preferences
(Cojocaru et al., 2013).

Thus, we define a “product variant” as a product that specifically targets a given
attribute combination, which implies that each point in the product space corre-
sponds to a product variant. Competition in our model resembles what other works
label as “networked Cournot competition” (Bimpikis et al., 2014): active product
variants have interdependent demands, so the fact that a firm opens up a new vari-



ant implies that its product variant demand depends on how many consumers from
the existing demand in other variants switch toward the new variant.

Our work also relates to the existing literature in a number of ways: some works
have emphasized the role of profit landscapes in shaping firm strategies (see for
instance, Robertson and Caldart, 2009). Other works consider the role of firm-level
adaptive behavior in Cournot competition across such landscapes (Lenox et al., 2006,
2007) and the effect of strategic positioning in multiattribute spaces (Adner et al.,
2014). Nonetheless, all these works consider spaces that are exogenously defined.
Here, we contemplate the possibility of having firms reacting upon the existing
space, as well as their strategic capabilities to modify it. In our model, firms develop
new product variants according to two criteria: (i) firms try to product differentiate,
so that there are no competitors in the new product variant, and (ii) new variants
have to be as close as possible to existing variants in the attribute space in order to
“steal” consumers from the latter. Putting it simple, firms’ new variants try to differ-
entiate as minimum as possible from the existing variants. Thus, the attribute space
resembles an evolving network of product variants. The model is explained in the
next section.

2 The model

2.1 Fundamentals

We conceive a market with an evolving number of product variants with a constant
demand of M consumers. Each dimension in the space represents a product attrib-
ute. Each variant has a given market demand and is represented as a cell (spot) in a
(multi-dimensional) product attribute space. Product variants emerge as a conse-
guence of firm actions in the attribute space. Variants may appear in the market due
to exogenous factors (Dawid et al., 2001), but here firms can strategically choose the
spatial location of the product variant they want to invest in. Choosing of a new
product variant is dependent on firm saturation of existing variants, so firms attempt
to soften competition in highly crowded variants by opening up a new spot in the
space. Variants are interdependent in the sense that demand from one variant can
be dragged into another variant created by a firm. See Figures 1 and 2.
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Fig. 1. A market as an evolving bipartite network. F1, F2 and F3 represent firms,
while M1 and M2 represent product variants. Panel (a) depicts the situation where
all firms compete by the same product variant, while panel (b) illustrates the effect
generated by firm F3 in opening a new variant M2. Part of M1 consumers are
dragged into variant M2.
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Fig. 2. Variants in attribute space.

2.2 Firm behavior and costs

We have a constant population F of firms which can be of two types: Firms with scale
economies (a-type) and firms without them (B-type). At the beginning of the simula-



tion each firm has an equal probability of being either type, but once the type has
been chosen it remains constant throughout the simulation. At each product variant
j at time t, we assume there is a number of firms no.,j,t with scale economies, and
nB,j,t firms without. We also assume that B-type firms have a constant unit produc-
tion cost cg; at variant j while a-type firms are assumed to be able to reduce unit
production costs as production increases. For an a-type firm we assume that its real-
ized unit production cost at variant j at time t, ¢y, depends on its production level
in this variant. That is, if an a-type firm operating a variant j, say firm i, at time t pro-
duces g, its unit production cost is computed as:

Cojt = Cpj — €Qijt - (1)

We assume that each variant has a unique associated cost of cg;j, which is deter-
mined by a uniform probability distribution. The term ej > 0 represents variant j's
unit cost reduction impact per unit of production quantity. In order to avoid the
possibility of having negative values for ¢y ;, we might establish a minimum unit cost
Co, SO that cg; — ;M = ¢, from which we obtain cg; = ¢, + ¢;M. We opt for set-
ting c, = 0. At a given time t, firm i calculates its profits at product variant j as fol-
lows (hereafter we suppress the time-related index for the sake of clarity in the ex-
planations):

T = Bgi — k4, - (2)

The coefficient ¢, ; represents the unit production cost, which depends on whether
the firms is a-type or B-type, k = {a, 3}. Assuming nj firms (of both types) operating
at variant j, the product variant j has the following price function:

B=a-bQ=a-b% qy, °

where Q; is total quantity at variant j, a and b; (a, b; = 0) are the price equation
intercept and slope values. In each variant, firms get involved in direct competition.
Since the price is set by the market, firms choose quantities in order to maximize
their profits (what is known as Cournot competition). Replacing Eqg. (3) in Eq. (2), a
given firm i that takes advantage of scale economies (i.e., a-type) maximizes its ben-
efits at variant j according to:

am; j n;j .

?ﬁj =a-— b] Zzil,zti qz,j - 2b]ql'1 - C’g'] + Zejqi‘j = 0, L= 1,2, ...Tl.a,‘j, (4)
om; j .
ﬁ=a—b]Q]+qw(Ze]—b])—cﬁJ =0, L= 1,2,...na'j. (5)

Summing up over all n, ; firms, we get:
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nal]-a - na’,jijj + (28] - b]) Zl='1] qi,j - na‘jcﬂ,j =0. (6)

In an analogous way, for a 8-type firm we obtain:

aTL’iJ _ nj _ .
_aqi’j =a-— biZz=1,z¢i qZ,j - zb]q,_,] - Cﬂ,] = O, L= na,j + l,na_]- + 2, ...,na’j +
ngj , (7)
thus, summing up over all ng ; firms, we get:
Mg, jtNnp,j —
ngja —ngbjQ; — by X, 5 1 dij — g g, = 0. (8)

Knowing that the total number of firms in variant j isn; = n,; + ng;, and that
Q= Z:;“l’ qi; + Z?:ri:?flj qi;j, we proceed to multiply equation (8) by —(2¢; —

b;)/b; and add it to equation (6). Then we get:

[“a.j - [(zei—;bﬂ]”ﬁ.j] a+ [ng;(2¢; — b) — bjng;]Q; + (2¢; — b;)Q; —

[Tla,j - [(Zef,;b")]n,;, j] =0, (9)

which yields a total quantity at variant j of:

(2e;-b;)
TR

- bl-na,j—(Zel-—bj)(nﬁ’j+1)

Going back to equations (6) and (8) and defining Q,; = Z:;“lj qij.Qpj =

Zna'j+nﬁ'j

i=”a,j+1 qi,jr we get:

Ng,j(a-bjQp,;—Cp,)

Qa'j = bl-na,j—(Zel-—bl-) (11)
__npj@abjQaj=cp ;)
= bjngj+bj 12)
Solving by substitution equations (11) and (12), we obtain:
o Ng,j _ .
Qa,] - bl'(‘na,j+n‘3'j+1)—26‘1'(11‘3']'+1) (a Cﬁ'] ) ’ (13)
[(bj;jej)]"ﬁ.j
Qpj = (a—cp;). (14)

bj(na,j+nﬁ‘j+1)—Zej(nﬁ‘j+1)



Then, given that equations are symmetric within each firm type, quantities at variant
j are determined accordingly: if firm i is an a-type, its production level at time t
would be q; j; = Qg jt/Na,je While ifitis a B-type, its production quantity would be
qijt = Qpjt/Np,jc Notice that ifng ;, =ng;, =1, b; = land ¢; = 0, the produc-
tion quantities are reduced to the expression (a - c)/3, which corresponds the opti-
mal production amount in a two-firm, one-shot Cournot model with a homogeneous
production cost, c. In order to bound quantities only to positive values, from equa-
tions (13) and (14) it can be noticed that a constrain on e is e < 1/2. Notice that an
additional constrainis a — cg; > 0.

Thus, Cournot competition as just described above takes place at every product vari-
ant but firms can simultaneously serve several variants. Also, overcrowding of firms
in a given variant might force firms to open up new variants if the one-time cost of
bringing in a new product variant is lower than the expected benefit.

Firms also face scope diseconomies. One way to represent scope diseconomies is
through niche width costs: the wider apart the firm’s variant locations are, the high-
er the costs become. This implies that serving very heterogeneous audiences is cost-
ly. Let us also assume that N indicates the niche-width distance unit cost. Also, let us
assume that sy, , represents the largest Hamming (block) distance between any two
variants’ location in firm’s “niche” H;, at time t. That is, the block distance corre-
sponds to the largest compound distance-based dissimilarity per attribute between
any pair of variants’ locations in the set H; ;. Of course, this is not the only possibility
when it comes to measure distance between two variants. Other alternatives are
also possible, like for instance the Euclidean distance or even computing the “largest
shortest path” among variants. However, we believe it is more realistic having the
firm computing the pairwise product variant dissimilarity per product attribute, and
figuring out the compound largest distance of its served variants.

Therefore, NSH“ represent the total niche-width cost. Therefore, firm i’s total prof-
its and total production at time t are represented by

Tt = Xjeny, Tije — NSuy, (15)
and
Qir = Xjery, Qijit » (16)
respectively.
It is noteworthy that the profit function (Equation 15) is fully separable. That is, the

profit firm i gets equals the sum of profits obtained in every variant where the firm
has presence (i.e., its niche). Nonetheless, it is important to highlight that competi-



tion is “networked” or nested. It means that the structure of competition in a given
variant (in terms of total quantity, number of competing firms and price) is affected
by a firm located in another variant that decides to either “invade” such a variant or
open up a new one. Also, creation of new variants triggers a redistribution of de-
mand across the existing variants in the space. Next, we will explain how firm expan-
sion takes place and how the attribute space is shaped by such an expansion.

2.3 Firm expansion dynamics

Firms may decide either to enter competition in existing variants or to give birth to a new
variant. Firms expand according to incremental profit expectations. At time t firm i decides
whether (i) to keep their served variants, (ii) to open up a new variant (whose location is se-
lected randomly from the neighboring positions), (iii) to expand into an existing variant (also
selected from the neighboring existing variants), (iv) or to drop an existing one. The firm
chooses what brings in more profits.

Alternatives (i), (ii), (iii) and (iv) are all considered simultaneously, so the firm chooses the one
with the highest profit expectations. First, if the firm keeps its current niche, its profit expecta-
tion for the next time step would be:

i1 = Zjen, Bijerr — NSy, - (17)

The term 7; ; ;11 is the expected profit in market j, which simply corresponds to the realized
profit in the previous time step. Second, if the firm opens up a new product variant, the mar-
ket demand would redistribute over all already opened up (i.e., active) variants. Expansion
implies that demand is redistributed across the existing variants. There is a number of ways to
do that, but here we simply assume that demand M is equally distributed along all active cells
(different distribution alternatives are possible, but we do not expect them to significantly
influence model outcomes. See Garcia-Diaz et al. (2008)). Thus, after the appearance of a new
product variant, the firm would expect to gain:

ipe1 = Xjeny, Rijeer — NSy, Tp — K. (18)

Here, the term #; ; ;1 corresponds to the realized profit in the previous time step (for the
sake of simplicity, we are assuming the firm cannot estimate the redistribution of demand
before a new variant is opened up). Note that sH“Umhas to reflect the computation of the
Hamming distance of the set H; 443, which includes the new variant d. K corresponds to the
one-time cost of opening a new variant. The term f,, represents (expected) monopolistic
profits at the newly targeted variant.

Quantity value depends whether the firm is a-type or 8-type. Generally speaking, if the firm is
B-type, the monopolistic profits at a given cell are computed as follows (since the location of
the new variant is irrelevant in this part, please note we avoid using sub-indices related to
product variants, but the same early naming conventions apply):

Ty = (a - bq*)q* - Cq*/ (19)

where g* = (a — ¢g)/2b. If the firm is a-type, its profit would be:



m,=(a-q)q — (g —eq)q", (20)
where the production quantity is given by ¢* = (a — ¢g)/(2(b — e)).

The third choice is to expand into an existing variant. In such a case, firm i’s profits are com-
puted as:

i1 = Zjeny, Tijeer — NSy, + Tia+1- (21)

Again, the values of 7; j,,, corresponds to the profit perceived along the served variants in
the previous time step. The term #; ; ... s represents the profit the firm would expect to obtain
should it enter such variant, d. For such a purpose, the firm uses either equation (13) or (14),
depending on firm type. In addition, the firm also considers the current values of the number
of firms at the target variant.

The fourth choice is when the firm wants to evaluate dropping (i.e., abandoning) a variant,
whose (expected) profits would be computed as:

~/

T 1 = Zj €H;—{d} i jes1 — NSHi_m)yt , (22)

where d stands for the dropped variant. Once more, the value of ;;,, corresponds to the
profit expectation at variant j the firm perceives in the next time step. In order to choose a
candidate variant to drop, the firm randomly picks up a variant.

According to highest expected incremental profits, every time step, the firm decides whether
to keep its current product portfolio (equation (17)), to open up a new cell (equation (18)),
invade an existing variant (equation (21) or to drop one (equation (22)).

At t = 0, the product space stands for a market with only one product variant. The maximum
active space comprises 11 x 11 variants (from variant 0 to variant 10). We run the simulation
for 50 time steps. This normally provides enough time to arrive to the maximal two dimen-
sional space fully saturated with possible product variants. Yet, as we will see next, partially
occupied spaces, and consequently, non-integer dimensionality numbers, are also possible.

2.4 Price behavior

Regarding price dynamics, we set coefficient a equal to total demand, a = M. The slope b; ; of
the price equation is set so that the market is cleared when the price is zero. At time t = 0 the
full market M is place in one sole variant, so it is cleared when b; ; = 1 (that implies that the
largest possible demand in a given product variant is the whole market itself). Given that the
market M is split equally among the existing variants, for subsequent values of the slope we
set b, equal to the number of existing variants for all variants, so we make sure the market
gets cleared if the price goes down to zero. It is important to say that, while considering ex-
pansion into a new variant, the firm takes the last observed slope as an input estimate of the
next time price equation.



2.5 Product space dimensionality

Generally speaking, attribute space models represent markets or market segments
with finite space segments, spun by axes of finite lengths, each axis hosting a finite
number of “scale elements”. The numbers of “scale elements” along axes determine
the number of “cells” in the space segment. These “cells” are elementary units of the
representation: it is normally assumed that neither producers nor buyers perceive
differences between products in the same cell. Increasing integer dimensionality
normally involves a ‘thinning out’ problem (Péli and Nooteboom, 1999). A two-
dimensional product space with 10 scale values along dimensions has 100 cells
(10x10); if a third product attribute of 10 scale variants develops, then cell number
climbs to 1000 (10x10x10). Assuming that total demand remains the same, average
demand density divides by 10 at each dimension shift. Even if the third developing
product attribute is dichotomic at the outset (e.g., a product possesses or not a new
feature), demand density halves.

The thinning out effect as calculated above is normally strongly overestimated, how-
ever, since demand distributes unevenly most of the time. Demand distributions
used to have some abundant center(s), reflecting typical customer needs, surround-
ed by vast domains of thin peripheral demand (Carroll et al., 2002). It is a mathemat-
ical fact that pace of cell proliferation is much stronger at the peripheries than at the
center: the majority of new cells appear near the walls of the space segment after an
upward dimension change (Bruggeman and Péli, 2014). The result is that a large,
often overwhelming, proportion of cells remain empty in higher dimensional attrib-
ute spaces, a fact well-known for example in social stratification studies (Blau, 1977;
Kolosi, 1988).

The number of empty cells, and so space patchiness, do not only increase because of
demand limitations, but also because of market actors’ cognitive limitations. Since
Hotelling’s famous paper on selling outlet allocation along the line (1929), ‘address
type’ attribute space models normally assume continuous dimensions for product
positioning (Lancaster, 1966; Salop, 1975; Irmen and Thisse, 1998; Péli and Wit-
teloostuijn, 2009). This also involves assuming that sellers and buyers are not only
able to distinguish between infinitely many product attribute combinations, but also
that all combinations stand for possible and recognizable product variants. Since
product innovation and marketing of new product variants are tedious processes
loaded with cognitive aspects like customer learning and producer engagement in
the targeted market segments, it is a rare marginal case when sellers and buyers
know all combinatorially possible product variants at the given market. Clearly, fil-
ters are needed to eliminate feature combinations that stand for not yet offered, or
not yet even recognized, commodity variants. Fraction dimension is a suitable meas-
ure for the degree of attribute space spottiness. Its application allows correcting for
the spurious proliferation of product variants as new dimensions are introduced.



We use Mandelbrot’s similarity dimension concept (1983:37) to define “fraction
dimension”. Assume a finite n (integer) dimensional Euclidean space segment. We
can assume without mutilating our main argument having uniformly m cells or vari-
ants (scale elements) per axis (see how to release this constraint in the Appendix.).
The type of scales — ratio, interval, ordering or categorical — is immaterial from the
point of view of the definition. Without restricting generality, we can assume unity
distance between neighboring variants, thus rendering the space segment under
investigation an n-dimensional hypercube composed of m"” variants.

The fraction dimension DIM of the space with V number of active variants (product
variants) from the m” total is defined as:

pIM =2 (23)

Inm

Equation (23) yields integer dimension n as special case for fully saturated spaces:

_ In(m™)

DIM =n (24)
Thus, fraction dimension yields integer dimension values for fully saturated subspac-
es. This important property explains why not using simply the percentage of active
cells as patchiness measure.

As mentioned above, our model resembles an evolving networked Cournot competi-
tion. Each firm is simultaneously involved in Cournot competition across several
product variants. If we equate “cells” of the fraction dimension measure with vari-
ants, we can argue that the available demand of each variant changes according to
the fraction dimension of the space. Thus, as seen in Figure 2, we conceive the at-
tribute space as a set of interdependent (i.e., networked) market variants where
competition takes place, each variant located in a spot in a space, and each net-
worked variant structure having a fraction dimension measure.”

A depiction of the evolving variant structure and its corresponding fraction dimen-
sion measure is illustrated in figure 3.

% An alternative approach to networked product spaces is proposed by Hidalgo et al. (2007).
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Fig. 3. Simulations that depict instances of four possible networked attributed spaces. Each
cell (variant) represents a product variant, while links represent product variant interdepend-
encies. In each variant, a Cournot competition takes place. From top left to bottom right,
fraction dimensions are (i) O, (ii) 1.65, (iii) 1.89, and (iv) 2, respectively. Blue variants represent
established ones, while red variants correspond to newly created variants in the last iteration.

3 Summary of results

Next we report simulation results according to N = 1000, K = 10000, M = 5000
and F = 100. The simulation starts with one variant located at (5,5). Coefficient b;
and e are generated according to uniform distributions.

Figure 4 illustrates the evolution of the space dimensionality. At the beginning of the
simulation there is only one variant, so the fraction dimension is zero. As new vari-




ants are created, the fraction dimension starts to rise. A fully saturated space is
reached when the fraction dimension is 2.

Fraction dimension

o Fraction dimension ,,

Time 58.8

o

Fig. 4. Typical behavior of the space dimensionality over time.

Fraction dimension affects last iteration performance differently whether the firm is
a-type or B-type. Figure 5 reveals that, as time (and dimensionality) increases, the
last transaction profit is eroded for a-type firms while the 8-type firms appear to
reduce the gap with or even surpass the performance of a-type firms. This indicates
that increasing dimensionality affects firms differently as to their scale advantage.
Firms with limited scale advantage may be favored with product heterogeneity
(something that has been observed in resource-partitioning settings. See Boone et
al, 2002). Surprisingly, it appears that in many instances a-type firms are the ones
that push the creation of new variants (as an attempt to exercise price discrimina-
tion). See Figure 6.
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Fig. 6. Variants opened up by firm type (note: if two firms decide to create a variant
in the same location, the number of new variants is counted as two).

At every dimensionality value, firms with scale advantage (a-type firms) register
higher cumulative profits (and wider niches) than those with limited scale power (8-
type firms), which reflects that scale dominance is sustained at all times. However, a




straightforward conclusion is that increasing the number of attributes lessens the

competitive power of scale dominance (Figure 5) and grant players with limited scale
advantage a relative advantage. See Figures 7 and 8.
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Figure 7. Average cumulative profits by firm type.
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Figure 8. Average niche size (Hamming distance) by firm type.



Last, we observe the evolution of average costs over time. There is a point where
costs appear to be lowest for both types, which implies there is an optimal fraction
dimension figure for minimum costs. As the market unfolds, costs increase for all
firms due to the weakening of the scale effect (the demand spreads over all variants)
and the increasing niche-width costs. Even with increasing costs firms are able to
charge higher prices, which bring about positive profits that gradually level off (see
Figure 8).

Last transaction costs Last transaction costs
69200 | Waphatype|| 76900 [ apha-type
A o Ebetatype o 1 W beta-type
a o 2 _— ]
¢ k'*’ > o h e
g II\./'J r ? N — =
g 2
a I
0 0
0 Time 58.8 0 Time 58.8
Last transaction costs Last transaction costs
87100 | W abhatype| g7100 | W alpha-type
i\ Wbeta-type a l Wbetatype
g \ g \
(1] P (1] - il
81N — 5 N——
8\ B N\~
a <
0 oJ
0 Time 58.8 0 Time 58.8
Figure 9. Average last transaction costs by firm type.
Conclusions

The model presented in this paper exemplifies one specific instance of co-evolution:
that between the firm and the product space. Since the space gradually unfolds we
find it convenient to represent its state according to a non-integer dimensionality
measure that we label “fraction dimension”.

The model depicts the competition dynamics between two firm types: one type that
is endowed with scale economies, one that is not. Increasing dimensionality affects
firm types differently and in a nonlinear fashion. Firm with scale advantage seek
price discrimination through the creation of new variants, at the expense of weaken-
ing their own scale advantage. Firms with limited scale advantage may find an in-
creased instantaneous performance through increasing product variety. In line with




ecological theories of markets, this set of results illustrates how firms with limited
scale advantage might proliferate in a market with scale dominance through in-
creased dimensionality.
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Supplementary material 1

Conceptual model conven- Explanation Range of values
tions
M Total number of consumer 5000
units
F Total number of firms 100
Co Minimum attainable unit 0
cost
Ca,jt a-type firms unit produc- Variable
tion cost
cgj Stype firms unit produc- la, ejM]
tion cost
e Unit cost reduction impact Variable
per unit of production
quantity at variant j
T j Profit of firm j at variant j Variable
P Price of variant j Variable
Qij e Firm i’s production quanti- Variable
ty at variantj at time t
Qi Total firm /s production Variable
quantity time t
a Price equation intercept M
b Price equation slope Variable
n; Total number of firms at Variable
variant j
Q Total quantity at variant j Variable
Ny jt Number of a-type firms at Variable
variant j at time t
ng i Number of Ftype firms at Variable
variantjat time t
N Fixed cost of attending a [0, 1000]
variant
Hit Firm i’s niche at time t Variable
qit Firm /s total production Variable
quantity at time t
i1 Firm i’s profit expectation Variable
at time t+1
T jee1 Firm i’s profit expectation Variable
at variantj at time t+1
SHi, Largest Hamming distance Variable

between any two variants
in firm i’s niche at time t,




H;;

e Firm i’s profit expectation Variable
at time t+1 after inclusion
of a new variant

Ve Number of active variants Variable
attime t
1Ty Firm i’s profit expected Variable
monopolistic profits at
new variant
" et Firm /’s profit expectation Variable

at time t+1 after expand-
ing to an existing variant

AP Firm i’s profit expectation Variable
at time t+1 after a variant
has been dropped

d Dropped or additional Variable
variant
K One-time cost of opening [0, 10000]

up a new variant

Table SP1. Variable and parameter definitions

Supplementary material 2
Fraction dimension with unequal number of scale elements (cells) per dimension

If the n-dimensional frame space has m; scale elements along the it dimension, then
the Vo number of unit cells in the frame space is:

Vo=]]m. (SP1)
i=1

Therefore, it is suitable to apply at the generalized similarity dimension definition
the geometric middle of the m; values in place of the unique m value in Eq. (23):

DIM = , (SP2)

where the geometric average of the m;values take the place of the unique m. Attrib-
ute spaces without an active element (V = 0) have no similarity dimension, while




spaces with a single active element have zero similarity dimension according to Eq.
(23).
Equation (23) can be transformed as:

InVv InVv ninV
DIM = - = = (SP3)

- 18 n .
. HZInmi >Inm,
i=1 i=1

The generalized similarity dimension value is identical to Eq. (23) whenever m;=m
for all i.




