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Abstract

Activities in human society require coordination of beliefs to be suc-
cessful. This paper explores two models of learning and coordination of
beliefs on abstract scale-free social networks using agent-based network
model. Beliefs are taken as an abstract set of either two (A,B) or three
(A,B,N) elements and agents update their beliefs using either majority
rule or coordination game dynamics, taking into account strength value
of each belief. At the start of simulation only limited number of agents are
seeded with beliefs and simulation explores how initial distribution effect
the diffusion and final outcome. A notion of vulnerability and strength
of a community of nodes is introduced to explain why stronger belief can
not always win. Further by varying strength of beliefs and centrality of
seeded nodes we can conclude that on a scale-free networks beliefs with
smaller strength can propagate and win over the network if centrality of
originally seeded nodes is higher, this corresponds to that something less
believable or even not true can spread and win in the society if it is sup-
ported by more influential people. Additional results from coordination
game based dynamic indicate importance of intermediate “Neutral” belief
that continues to exist on the network even if one of the other beliefs
does not survive, and which presence speeds up convergence and diffusion
process.

1 Introduction
Social structure of human society is a result of interactions and communication.
As it is impossible for any one person to know and communicate with everyone
in the society, our interactions take place within a small circle made up of our
relatives, friends, colleagues and others who we have a shared interests and
activities with. Our interactions thus take place within human social network
which can be represented as a graph where nodes are people and edges our
connections to those we interact with. This network is how we learn and how
we tell others what we have learned about the world. The coordination of
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human activities requires coordination within this network which can take form
of cooperation or competition ([23], [14], [16])

Our knowledge can be represented as a set of beliefs about the world. This is
what Buckland referred to as information-as-knowledge [2] and it can vary from
simple and fairly unambiguous “my brother’s name is Jack”1 to complex topics
of political nature such as “I believe that everyone should have equal access
to health care.” We acquire our knowledge and beliefs in form that Buchland
referred to as information-as-thing [2] through direct observation of our environ-
ment, individual people we interact and communicate with, especially those we
know well and communicate with on regular basis, and mass media and other
forms of mass communication and information transmission like books. Direct
observation is generally unambiguous, but it is not so for indirect information
that is received through social network and mass media; and it is indirect infor-
mation that accounts for majority of acquired knowledge.

If there is no or little prior knowledge and only one source of information
that does not conflict with any prior knowledge, then new information serves to
fill the gap and is acquired without much conflict [3]; in other cases the sources
of indirect information maybe in conflict with each another or with prior held
beliefs. For example one of your friends (or mass media source) may say that
he or she believes government should be involved in providing health care to
everyone, while your other friend may say that health care should be a strictly
private business matter. If beliefs are in conflict, a person has to make a choice
about who is right. These decisions are made based on how much one trusts
each source of information, the strength of their statements, and how many
people in one’s network may have this belief [21].

How people make decisions as a group is something that requires consider-
ably more research. Gigone and Hastie in their article ([9]) have noted that
aggregate inference of a group directly relates to how many people are familiar
with the question and are able to answer it. This is a majority-rule in group
decision making, meaning choosing the answer that majority of the group be-
lieve in. Majority-rule has deep roots in human society and has been used since
ancient times such as at Roman Senate, and continues to be used in majority of
political bodies today. A capable mathematical model of group decision making
is Group Social Decision Scheme (SDS) developed by Davis in 1973-1974 ([4]), it
is a generalization of majority-rule that allows for more general schemes and can
deal with cases where there may not be a majority but it is necessary to make
a decision nonetheless. Latané thought that “impact should take the form of a
power function, with the marginal effect of the Nth other person being less than
that of the (N–2)th” [13]. But Sorkin and his co-authors found that just simple
majority leads to better decisions than 2/3 or larger consensus ratio ([24]). In
this paper we will use the basic majority-rule model since more complex models
are not understood as well and since majority rule is most natural for abstract
simulations where everyone is equal.

Having common beliefs also makes coordination easier, so people who want
1actually really not so simple as it requires knowledge of a concept of “brother” and naming
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to coordinate try to convince others of their beliefs. Knowing who had been able
to coordinate effectively may also be used as means to decide among conflicting
beliefs, which is the basis of the second, game theoretic, model included in this
paper.

Two type of networks have been recognized as important in approximat-
ing properties of real-life human social networks: Small World Networks and
Scale Free Networks. In Small World networks average path between any two
randomly chosen nodes is very small compared to large size of entire network,
officially these are networks where average path has logarithmic relationship to
size of the network [30]. Human networks have been shown to be small-world
and this is where the concept of “six degree of separation” comes form; this
concept means that for any two people anywhere in the world, there is a path
of acquaintances that would connect them and it’d involve on average 5 other
people.

Scale Free Networks are networks where degree distribution follows a power
law - P (k) = kγwhere usually 2 < γ < 3 (see [1]). In these networks there are
very few extremely highly connected nodes and large number of nodes that have
very few connections. Scale free networks are a subset of Small World networks
since using highly connected nodes it is possible for information to traverse from
one side to the other very quickly.

Real world network of human communication and social networks such as
facebook are not quite scale free because almost everyone has more than just one
or two connections and people with largest number of connections don’t quite
reach the huge number of friends expected in a pure scale-free network. Never-
theless several studies have shown scale free properties of real human networks
and networks of human communication[15, 19, 20]. The degree distribution
P (k) in networks with scale-free properties is not described by clear power law
but can be approximated by power law better than by a linear function. As
we are interested in looking at behavior of human networks, we take scale-free
networks as being the close abstract approximation for purpose of our models.

2 Models
Two types of models are used in the paper to explore competition and con-
vergence of beliefs on an abstract social network. The models are explored
computationally using simulations with software written as a custom plugin to
Gephi2.

Knowledge is is represented as two opposite conflicting beliefs A and B, and
a special neutral belief N. People are represented as nodes on a network graph,
and edges are their interconnections, such as friendship ties. Beliefs are public
attribute of a node that is continuously shared with neighbors who may update
their beliefs based on this attribute.

More formally a simulation model M = { V, E, B } and its state S are:
2Free software for doing statistical analysis and visualization of graphs. Available at

http://www.gephi.org
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- A set of NodesV = Zn ={ 1, 2, . . . , n }
- A set of Edges E ⊆ {(v1, v2) : v1, v2 ∈ V }
- A set or Beliefs with strength valuesB = {(b, s) : b ∈ {′A′,′B′,′N ′,′ U ′}, s =

0..∞}
- An assignment of beliefs to nodes which is a dynamic state of the system:

S = {(v, b) : v ∈ V, b ∈ B}
There are two different dynamics used for updating node beliefs correspond-

ing to two models. The first model uses neighbor majority rule for belief updates
while the second is based on coordination game.

Simulations are done using scale-free networks of 200 nodes generated using
Barabasi-Albert model[1] and 200 node small world networks generated using
Watts-Strogatz model[30]. Three nodes are originally seeded with one of the
main beliefs A or B (3 nodes for A and 3 for B in a graph of 200 nodes) while
others start with special U belief which has 0 strength. We are interested in
which of the main beliefs are more likely to dominate over the network based on
strength of the beliefs and centrality of original seeded nodes. Centrality here
is in-degree/out-degree centrality which is based on number of edges node has,
nodes with greater number of edges are considered to be more central as they
can influence more of their neighbors.

The models being compared in this paper differ in the belief update rules
and use or non-use of Neutral beliefs (i.e. if Neutral belief has strength 1 or
0). The strength of beliefs A and B are independent parameters varied across
simulations.

2.1 Majority Rule based Model
The first model uses a majority rule dynamics. For each node the update rule is
that during next turn a belief of the majority of node’s neighbors becomes the
node’s belief. This is based on that people are more likely to believe something
if majority of their friends believe in it. The weight of a beliefs A and B for
node N at time t is calculated as:

Neighborhood(n) = {v1, v2, .., vk} = {v : v ∈ V and ∃e ∈ E s.t.e = (vn, v}}
NeighborBeliefs(n, b, t) = {v : v ∈ Neighborhood(n) and (v, b) ∈ S(t)} -

where S(t) is state at time t
WAn(t) = size(NeighborsBeliefs(n,′A′, t)) - number of nodes in the neigh-

borhood of n with belief A
WBn(t) = size(NeighborsBeliefs(n,′B′, t)) - number of nodes in the neigh-

borhood of n with belief B
Minimum model involves only three beliefs - A, B and Unset. Beliefs are

updated according to:

Bn(t + 1) =

{
′A′ : WAn(t) ∗ SA > WBn(t) ∗ SB
′B′ : WAn(t ∗ SA < TBn(t) ∗ SB

- where SA is strength

of ’A’ and SB is strength of ’B’
In case of equality there is a random assignment of either ’A’ or ’B’.
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An extended model makes use of and assigns Neutral belief when weights
are approximately equal:

Bn(t+ 1) =


′A′ : 0.8 ∗WAn(t) ∗ SA > WBn(t) ∗ SB
′B′ : WAn(t) ∗ SA < 0.8 ∗ TBn(t) ∗ SB
′N ′ : otherwise

Only a few nodes are originally seeded with one of the main beliefs A or B (3
nodes each). We are interested in how “diffusion” may happen and which of the
main beliefs would dominate or win over entire network based on which nodes
were originally seeded and their location and centrality in the network, as well
as based on strength of each belief.

This model is somewhat similar to standard information diffusion models
[8]. But studies of networks and diffusion of information have generally looked
at only one piece of information (or something else such as presence of infection)
being distributed on the network with no competition involved. Diffusion in a
case of competitive beliefs is the focus of this paper.

2.1.1 Similar Studies

There have been only few studies with competitive beliefs spread on the network.
Here are the ones that are most similar:

• Rob Stocker and his co-authors have done a simulation study published
in 2002 [25]where there were two opinions 0 and 1 randomly assigned to
all nodes on the network with node-specific level of influence 3and level
of susceptibility values used to decide on how opinions are distributed
on the network. Their model had updates of beliefs/opinions based on
individual pairwise interactions and if level of influence of one node was
greater than susceptibility of another, the opinion of dominant node was
taken by both nodes. Such pairwise interaction model can be considered a
game being played by nodes on the network, but the change immediately
after interaction causes large number of updates and they reported great
deal of instability in the results rather than consolidation of consensus for
one of the opinions. This study looked at Random, Small World and Scale
Free networks finding similarity between Small World and Scale Free.

• Tian Wang and co-authors have an upcoming paper “Analysis and Control
of Beliefs in Social Networks” (currently available on archiv [29]) where
beliefs are a real-valued node property ranging from -1 to 1 which are
initially assigned at random and thereafter converge based on the beliefs
of the neighbors. Controlled set of nodes contentiously broadcast their
beliefs on the network causing change in other nodes. They have a set

3The simulation model developed by the author of this paper includes similar concept of
trust. However trust concept is not node-specific but edge based. This is more realistic as
different people often have entirely different opinion about if someone else should be trusted
and how much. The trust was always set to 1 for what is presented in this paper. How this
can be of use will be discussed in future research work.
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of analytical results for Scale Free Networks (in their paper instead of
directly using term scale-free they look at networks formed according to
Preferential Attachment Model by Barabasi [1], as well as those formed
according to Generalized Markov Graph model [7],[28]). Their results
are very interesting as this is the only similar study with analytic results
rather than simulations. However their results focus on control set and
how to best choose these nodes using network graph adjacency matrix,
concluding that best location are ones with high clustering coefficient of
the nodes.

• Hashimzadea and co-authors have a paper in Journal of Economic Psy-
chology on “Social networks and occupational choice: The endogenous
formation of attitudes and beliefs about tax compliance” [10]. This is an
experimental study that analyzed formation of groups with different be-
liefs on taxes which were based on professional association and modeled
based on interaction of people on a social network.

All these studies differ in various ways from what is described in this paper. But
despite their differences, they all show importance of centrally located nodes for
how competitive beliefs spread on the network.

2.1.2 Results from a Majority Rule model simulation and Discussion

The models are tested using computer simulations (software written in Java as
a plugin go Gephi) and use several previously generated graphs of 200 nodes
and about 800 edges (some graphs have 790 to 795 edges). Simulations are done
as as a set of trials with same parameters - either 100 or 200 trials with same
strength Sa, Sb for A and B beliefs and same probability for in-degree centrality
for seeded nodes. Each trial starts with seeding of initial nodes (done using
probabilistic algorithm that can seed beliefs A and B at nodes with expected
difference in average centrality) and proceeds through turns during which nodes
adjust their beliefs based on beliefs of their neighbors using majority rule. All
nodes adjust their beliefs together during each turn. If all nodes in the network
acquire same belief, the trial ends early, otherwise it continues for up to 200
turns as long as there are some updates still happening. The system records
how many trials end with all nodes having belief A, or all nodes having belief
B, or if both beliefs are present what is the ratio of A beliefs to B as average of
all simulation trials.

Majority Rule Network Model - base results

When strength of beliefs is varying between simulations, but centrality of initial
seeded nodes is the same for both belief A and B, then result is:
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The x axis above is SA/SB so when both SA=1 and SB=1 then approxi-
mately 33% of trials end with all nodes with A belief, 33% end with all B belief
and 33% end with both. This means all these are equally probable given equiv-
alent parameters for A and B beliefs. When strength of beliefs is varied even a
little and SB>SA, and accordingly SA/SB < 1, then almost all trials end with
all nodes with B belief.

Vulnerability and Strength of Communities

That some trials may still may have both beliefs even if one is stronger is a
result of network structures. Especially important are communities, which are
sets of nodes which all have more connections to other nodes in the community
then to nodes outside of the community. These communities are complete or
incomplete cliques (clique is a set of nodes where each node has connections
to every other node in the clique). Here is an example of a graph with several
communities identified:

If one of the nodes in the community is initially seeded with certain belief
while other nodes are Unset, the entire community quickly adapts this belief
and can maintain it despite external pressure. Because even if all nodes out-
side have opposite belief with higher strength, the community nodes will stay
with its belief because each node has more neighbors within community giving
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community believe higher weight according to majority rule algorithm.
More formally we can define vulnerability of the community to outside in-

fluence in terms of vulnerability of its nodes. This is based on how many con-
nections the node has to outside as opposed to inside the community:

V ulnerability(Node n|Community C) = size({e∈E:e=(n,v),v /∈C})
size({e∈E:e=(n,v),v∈C})

V ulnerability(Community C) = max({∀n ∈ C : V ulnerability(n,C)})
In the above example:
V ulnerability(A) = 2

8 = 1
4 , V ulnerability(B) = 2

3 ,
V ulnerability(C) = 3

9 = 1
3 , V ulnerability(D) = 2

7
Numbers in this measure range from 0 to 1 and closer to 1 are communities

that are more vulnerable to outside influence. The strength of the community
can be defined as:

Strength(C) = 1
V ulnerability(C) - with values ranging from 1 to ∞

If all nodes in community C (from the figure above) had belief ’A’, then
strength SB of believe ’B’ would need to be SB > SA∗Strength(C) or SA>3*SB
in order for belief ’B’ to penetrate and take over the community. Despite what
above example may indicate, in the randomly generated graphs the communities
with vulnerability < 0.5 are uncommon, which is why even small variations of
strength can be enough for beliefs to propagate over the entire network.

Majority Rule Network Model - results with unequal centrality

There is a great deal of importance in regards to not only these communities,
but how many nodes in a graph, get certain belief within first few turns. Even
with higher strength of belief ’B’, when initially seeded nodes for ’A’ have more
connections, then belief ’A’ is able to spread to more of the Unset nodes making
it more difficult for ’B’ to win on the network.

When average centrality of nodes seeded with belief A was about 4 times
that of belief B, the following results were obtained:

In above when strength of both ’A’ and ’B’ beliefs is the same, then higher
centrality for ’A’ gives it preference on the network and majority of trials end
with all nodes having ’A’ belief. With growing strength of ’B’, the percent of
trials in which A wins decrease until at abut SA/SB=0.75 an intermediate stage
is reached where majority of trials end with both beliefs.
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This confirms a generally well known fact that social networks and society
in general are vulnerable to deception. If people who are important and very
well connected in the society, say something, their opinion can spread over the
entire society even if opposite opinion has more strength to it when directly
compared against it. This is the base of propaganda and why it works and
why media sources (which can be modeled as highly connected nodes with di-
rectional connections) are important for public opinion. Isolated communities
and communities with strong internal beliefs, such as ones based religion, can
be modeled as highly connected set of nodes with high community strength
and low vulnerability; they are not as vulnerable to propaganda and to outside
influence and can keep their internal beliefs together for a long time.

2.2 Coordination Game Based Model
2.2.1 Game Theory and Coordination Game

Game theory studies interactions of agents who can use multiple strategies and
want to achieve best results. These agents, called players, engage each other and
each gets a payoff that depends on a choice of its strategy and that of another
player. Players are assumed to be rational and interested in maximizing their
payoff.

Games that have been most studied are 2-2 simultaneous games with 2
players each with 2 strategies. These are represented in a 2x2 matrix - 2 rows
for strategies of the row player, and 2 columns for strategies of the column
player. Each cell in the matrix has two numbers - 1st is a payoff of a row
player and 2nd of a column player. These payoffs maybe different for row and
column players if they come from different sets, if not and payoffs are the same
it is called a symmetric game. And because on a network row and column
players are chosen from the same set of nodes on the network, in their 1-1
interactions they are playing symmetric games. Even with just 4 payoff numbers
these games can serve as models for large number of phenomena and many
interesting and important games have been studied: Prisoner’s Dilemma, Hawk-
Dove, Coordination Game, Stag Hunt (itself a type of Coordination Game) and
others.

Model in this paper looks at basic Coordination Game. In this game players
get high payoff if they both play the same strategy and low payoff if different.
This can be represented by the following payoff matrix, where ’a’ and ’b’ are
abstract payoffs for playing strategy A and strategy B:

Strategy A Strategy B
Strategy A a,a 0,0
Strategy B 0,0 b,b

The equilibrium solution to the game is for players to play either (A,A)
or (B,B). Even with a<b or b<a they are both Nash equilibrium solutions as
deviation for either player leads to 0 payoff. The higher payoff equilibrium, lets
say (A,A) is payoff-dominant while lower (B,B) is risk-dominant.

An extension of 2-person games are evolutionary games where large number
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of players (either finite or near infinite) play 2-2 games against each other.
After each game, with some probability the player would re-evaluate results
and may choose another strategy to play next time using specified update rule.
The update rules fall into several common dynamics: best response dynamic,
replicator dynamic, imitator dynamic, and others. Research topics are then
what percent of players would have what strategy as times goes to infinity and
how this relates to initial ratio of strategies. In basic evolutionary games any
two players are equally likely to play against each other, if that is not the case
the game is considered to have a network structure. For coordination game, it
has been shown by Kandori that only risk-dominant solution is scholastically
stable without additional network dynamics[11]. As Skyrms shows the presence
of network dynamics allows to reach both equilibriums [23].

2.2.2 Games on Networks

A number of researchers have been interested in models where players are not
paired to play randomly but instead there is a network structure and players can
play only with some of the other players. These games can be roughly considered
extension of evolutionary games, with update rules that make use of network
structures. Some of these models allow for updates to network structure itself
as part of the game. Here is a brief review of the research published in this area:

• Kirley looked at the Hawk-Dove game being played on sets of Random,
Regular, Small-World and Scale Free networks. He provided results for
propagation of hawks vs doves for all these networks showing that after
large number of simulation turns Small World and Scale Free show similar
results but games on small world networks take longer to stabilize. Overall
his results are that Evolutionary Stable Strategies (ESS) do not always
give best results for particular neighborhood and it depends on structure
of a network[12].

• Shang and co-authors looked at evolutionary minority game on Random,
Star, Regular and Scale-Free networks finding a number of network effects
and evolution of global coordination [22].

• Ranjbar-Sahraei and co-authors looked at continuous action iterated pris-
oner’s dilemma (CAIPD) where 2 players can choose strategies from con-
tinuous sets depending on how much they cooperate. They looked at
games on Regular and Scale Free networks [18]

• Kevin Zollman in his dissertation on Network Epistemology[34] and re-
lated articles [33] looked at Cycle, Wheel and Complete networks and the
effects of these networks on dynamics of social learning, which is modeled
as probabilistic learning beliefs game. This model has some similarities to
majority rule based model discussed earlier with competing beliefs that
can spread through the network. He looks at networks with a very small
number (10 or less) of nodes and shows that cycle structure results in
quicker learning than wheel and complete graph networks.
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• Payton Young looked at generalized coordination games (including stag
hunt) on lattice networks, networks with small in-degree and out-degree,
and several other network types[32]. He looked at these networks as a
model for diffusion of innovation. He had a number of theoretical results,
which in part show that if enough time is given for dynamic interaction a
convergence is likely with result that depends on a network structure.

• Ebel and Borhnoldhave looked at Prisoner’s Dilemma game being played
on a network ([6],[5]). In their model network changes are allowed to find
best neighbor. It shows emergence of a network with clusters and network
structure that itself is similar to Nash equilibrium in a way that further
adjustments would not lead to better payoffs. Their result is similar to
results of Tomassini and Pestelacci discussed below.

• Tomassini and Pestelacci in several papers ([26],[17],[27]) look at coor-
dination game being played on a network with rules that allow network
updates based on edge-based “satisfaction” value (an average of payoff re-
sults over time). Lower satisfaction links are probabilistically removed
and new connections can be established based on “introductions” from
one’s neighbors. The model starts with random network and over time
evolves into a complex network with a series of clusters of nodes that play
same strategy in a coordination game. At the end clusters merge together
and what remains are two large clusters of nodes that all play the same
strategy with only a few connections between the two clusters.

2.2.3 Model, Payoffs and Strategies

The model in this paper involves coordination game played on a scale free and
small world networks. The motivation was to see if choosing those who can
coordinate more effectively results in structures similar to majority rule model,
and looking at if coordination can be used to decide among conflicting beliefs.

The base model involves three strategies - A, B and Unset. As with ma-
jority rule model 3 nodes start with A strategy, 3 with B strategy and rest are
Unset. We are interested in how “diffusion” may happen and which of the main
strategies would dominate in the network based on centrality of initial nodes
with A or B strategies and how varying payoffs effects the game, which case can
be compared to 2-player games where there is payoff-dominant equilibrium for
following one strategy and risk dominant for following the other.

The simulation is divided into turns. During each turn, each node plays a
coordination game using its current strategy against each of its neighbors. The
payoffs from each game are summed up and then node’s total payoff for the game

is this sum divided by the number of neighbors: Pn =

∑
i∈neighborhood(n)GamePayoff(Sn,Si)

size(neighborhood(n))

This is an agent-based model using imitative updates which for analytical
results is considered equivalent to replicator dynamics in evolutionary games.
At the end of a turn each node with 80% probability4 may update its strategy

480% is probability leads to quick updates and makes it similar to every-turn update
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by looking at payoffs of all its neighbors, and if any neighbor has a better payoff
than the node would adapt strategy of that neighbor. If more than one neighbor
has the same higher payoff, one of them is randomly selected to be imitated.

The base payoff matrix is:
Unset Strategy A Strategy B

Unset 0,0 0,1 0,1
Strategy A 1,0 5,5 1,1
Strategy B 1,0 1,1 5,5

’Unset’ strategy, that almost all nodes start with, is fully dominated by ’A’
an ’B’ which quickly spreads through the network and after several turns all
nodes have either A or B. Further as result of the update mechanism more
successful strategy could emerge as a overall winner. With above payoff matrix
both strategies are equally likely to win, which is indeed the case for some
simulations that have been run. What is of more interest is what happens when
one of the strategies is weighted higher than the other. For this two parameters
Str_A and Str_B are introduced making the payoff matrix:

Unset Strategy A Strategy B
Unset 0,0 0,Str_A 0,Str_B

Strategy A Str_A,0 5*Str_A,5*Str_A Str_A,Str_B
Strategy B Str_B,0 Str_B,Str_A 5*Str_B,5*Str_B

But as individual numbers only effect the scale, it is the ratio of Str_A/Str_B
that matters and in the presented results ratio is what is plotted on the x axis.

The original model with only A, B and Unset strategies did not show cycles
and other interesting effects that were seen with Majority Rule model. Therefore
a second model was created that added new strategy N, as something intermedi-
ate between A and B. This strategy appears when node’s best payoff neighbors
have opposite strategies A and B and so its as if an agent can not decide for
sure what to adapt and so chooses a middle neutral ground. The updated payoff
matrix for the game with strategy N (but without Str_A and Str_B) is:

Unset Strategy A Strategy B Neutral
Unset 0,0 0,1 0,1 0,1

Strategy A 1,0 5,5 1,1 3,3
Strategy B 1,0 1,1 5,5 3,3
Neutral 1,0 3,3 3,3 3,3

Allowing for mixed strategies there are 6 equilibria in above game: (A,A),
(B,B) which are the two payoff dominant strategy equilibria with payoff of 5
and (N,N), (N, 0.5 A + 0.5 B), (0.5 A + 0.5 B, N), (0.5 A + 0.5 B, 0.5 A + 0.5
B) which all have a payoff of 3. Here 0.5A + 0.5B means a player could choose
a strategy of randomly, with 50% probability, choosing between A and B which
gives the player average payoff of 3 equivalent to a payoff from playing pure N
strategy. In evolutionary game not played on a network this predicts a possible

of majority rule model. Evolutionary Games models usually use lower probability to make
strategy updates a smoothly changing curves which leads to very large number of turns for
simulations to reveal equilibrium. Instead a number of simulations with same parameters are
run here and results are averaged.
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equilibria with some percent α of players who play N and 1−α
2 who play A and

1−α
2 who play B. But this is not a stable equilibria because if percent of players

who play A is just slightly more than those who play B they will be imitated
more and eventually everyone would be playing A.

Introducing again Str_A and Str_B gives the following complete payoff
matrix:

Unset Strategy A Strategy B Neutral
Unset 0,0 0,Pref_A 0,Str_B 0,1

Strategy A Str_A, 0 5*Str_A, 5*Str_A Str_A, Str_B 3*Str_A, 3
Strategy B Str_B, 0 Str_B, Str_A 5*Str_B, 5*Str_B 3*Str_B, 3
Neutral 1,0 3, 3*Str_A 3, 3*Str_B 3,3

This game eliminates mixed strategy equilbria that includes N if (Str_A+Str_B)>1
but as we shall see that is not the case for network games.

2.2.4 Results from a Coordination Game Model and Discussion

The simulations for this model were done same way as with majority rule model
with graphs of 200 or 250 nodes. For this paper results from a specific graph with
200 nodes and 794 edges is used. As with the other model simulation consisted
of 200 trials which had same Str_A and Str_B values and same probability
initial strategy (seeded) nodes to have a centrality position. Each trial can run
for up to 200 turns or may end earlier if every node is playing A or B strategies
or if no nodes has changed their strategy in previous 2 turns. At the end it is
recorded how many nodes are A, how many are B, how many N. Another trial
then runs and at the end of a simulation it is recorded how many trials ended
with all-A strategies, all-B strategies and the mix; how many nodes there were
with A strategies, B strategies and Neutral is also recorded and averaged for all
results. Independent variables that can be varied for simulations are Str_A and
Str_B changing between 1 and 2 and centrality of initial nodes for strategies A
and B. Simulations could either all include N strategy as discussed above or not
include it.

Results: Coordination Game Model without Neutral Strategy

In the first result there is no N strategy and centrality for strategies A and B
set the same, so only Str_A and Str_B are varied. Plot below5 shows how
many trials, out of 200 for each set of parameters, ended with all nodes having
A strategy (red graph), all nodes having B strategy (blue graph) and mix of
both (yellow) :

5On this and other plots Str_A is called Pref_A and Str_B is called Pref_B
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Here the y axis is number of trials (on the graph these are called simulations)
while x axis is a strength of strategy A over B, which is Str_A / Str_B. In
simulations Str_A varied between 1 and 1.2 while Str_B grew from 1 to 2. As
can be seen all simulations starting with Str_A / Str_B < 0.8 end with all
nodes with B strategy. With equal strength of A and B majority of trials end
with both A and B, so for this case data on averaged percent of nodes that end
with A and B strategies is relevant and shows that about equal number of A
and B nodes at the end of a trial:

When centrality is varied such that initial strategy nodes for B have on aver-
age 6 times the in-degree/out-degree centrality of initial nodes with A strategy,
then strategies are no longer equal and we see that strategy B with higher
centrality is able to dominate the other strategy even when Str_A > Str_B.
This is the same result previously seen with the majority-rule model but with
coordination game, these effects are much weaker:
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Results: Coordination Game Model with Neutral Strategy

We now go to results of model that includes Neutral strategy. As with no neu-
tral, the first plot shows how many trials, out of 200 for each set of parameters
(Str_A and Str_B), ended with all nodes having A strategy (red graph), all
nodes having B strategy (blue graph) and mix of both (yellow):

While this appears to be similar to results with no neutral strategy simula-
tions, with neutral for strategy A to entirely dominate it needs higher Str_A/Str_B
ratio (~1.35=1/0.73, without neutral it was ~1.1). When looking at the average
percent of nodes that ended simulation with A strategy (red), B strategy (blue)
and Neutral (green) the results are even more interesting:
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It appears that Neutral strategy survives and there are nodes that end with
that strategy even when there is a large difference in strength of A and B strate-
gies. This is similar to results that Peyton Young got [31] where in simulations
he also had 3 strategies with intermediate surviving even when one or the other
would not.

Another interesting result is that simulations with Neutral strategy actually
converged faster rather than slower as might be expected. Cycles at the end also
only occurred with Neutral strategy and in fact were quite common for equal
strength of A and B strategy scenarios.

So Neutral strategy appears to bring more dynamics into the system. If
there was more than just one intermediate strategy these dynamics could be
even more noticeable, which maybe the case with real world social networks
that have many variables.

3 Conclusion
The competition of beliefs is a more realistic model of distribution of information
and knowledge than standard information diffusion models that only look at
spread of one piece of information, so models described in this paper provide an
insight about what is going on with distribution of beliefs and convergence to
certain belief.

The models show importance of the network structure in the distribution
of information and importance of centrally located people that can greatly in-
fluence beliefs of everyone else on the network. Result of the simulations show
that beliefs that are stronger may not always win if those who have opposite
view have a more central role in a social network. In fact by varying strength of
beliefs and centrality of seeded nodes we can conclude that beliefs with smaller
strength can win on the network if centrality of originally seeded nodes is much
higher. This corresponds to that something less believable or even not true can
spread and win in the society if it is being argue for by most influential and well
connected people.

A notion of vulnerability and strength of a community of nodes is also in-
troduced to explain why there can exist clusters that do not change to majority
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view in presence of strong belief. This is another common feature we see in the
society with religious communities such as Amish. When these communities are
closed and members maintain ties only within the communities, they are able
to sustain their beliefs within larger society that has different norms.

By testing with model that uses coordination game and obtaining similar
results to majority-rule based models we can conclude that information propa-
gation is a sort of coordination. Centrality of seeded nodes appears to be less
important, but same overall results still hold.

Additional results from coordination game indicate importance of interme-
diate “neutral” belief, which presence speeds up convergence and diffusion and
which continues to exist on the network even if one of the other beliefs does
not survive. This is unusual results which has been noted by others but is not
well understood. But complexity of human society requires looking at many
more than just 2 strategies and this topic definitely requires a lot more re-
search. Simulations such as the ones described in this paper will be invaluable
tool here because it is not likely that we can achieve analytic results in complex
multi-strategy space.

This is ongoing research and what are presented here are very early results of
simpler models. The simulation engine written is planned to be released as open-
source tool and will allow people to create and run simulations on a variety of
networks and specify different dynamics for game-theoretic models. The author
is grateful for the support provided by the Institute for Mathematical Behavioral
Science at UC Irvine to work on this research project.
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