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Abstract
Computer simulations of complex food-webs are an important tool for deepening our understanding of these
systems.  Yet most computer models assume, rather than generate, key system-level patterns, or use mathematical
modeling approaches that make it difficult to account fully for non-linear dynamics.  In this article we present a
computer simulation model that addresses these concerns by focusing on assumptions of agent attributes rather
than  agent  outcomes.   Our  model  utilizes  the  techniques  of  Complex  Adaptive  Systems  and  Agent-Based
Modeling so that  system-level  patterns of a general ecosystem emerge from the interactions of  thousands of
individual  simulated  agents.   This  methodology  has  been  validated  in  previous  work  by  using  this  general
simulation model to replicate fundamental properties of an ecosystem, including: (1) the predator-prey oscillations
found in Lotka-Volterra; (2) the “stepped pattern” of biomass accrual from resource enrichment; (3) the Paradox
of Enrichment; and (4) Gause’s Law.  In this work we explore further the fundamental properties of this generative
model in the context of the Red Queen Hypothesis,  also referred to as the “arms race” between antagonistic
species, e.g. predators and prey.  We find that improvements in the competitive landscape for a single entity in a
predator  species  does  not  generally  confer  a  benefit  on  the  predator  species  as  a  whole,  and  may even  be
detrimental to the predator population.  This non-intuitive result is shown through two methods of adjusting the
predators effectiveness in consuming prey.  We further explore this idea by explicitly accounting for individual
entity's energy requirements, and also allowing evolutionary adaptation for an effectiveness / energy trade-off.

1.0 Overview
The literature on marine and terrestrial ecosystems is long and varied, encompassing both theoretical models (e.g.:
Grimm, 1999; DeAngelis & Mooij, 2005) and empirical surveys (e.g.: Christensen et al., 2003; Frank et al., 2005).
Some significant differences between model results and real-world surveys have persisted for years, and it has
been difficult identifying fundamental principles relative to the many complicating factors that can be found in
existent  ecosystems.   For example,  in  the early  1980s  Oksanen et  al.  examined multiple  trophic levels  in  a
predator-prey system using mathematical models, in order to determine whether species population (bio-mass) is
fundamentally controlled by resources – as was the conventional wisdom at the time – or dominated by predation
(Oksanen et al., 1981).  In describing this work, Power states that these models produce “a stepped pattern of
biomass accrual” (Power, 1992); Brett and Goldman further characterize the Oksanen et al. results, saying that “In
food webs with an odd number of trophic levels, increases in primary production should lead to increased biomass
for odd-numbered trophic levels and no change in biomass for even-numbered trophic levels. Conversely, in food
webs with an even number of trophic levels, increases in primary production should lead to increased biomass for
even-numbered trophic levels and no change in biomass for odd-numbered trophic levels”  (Brett & Goldman,
1997).  

More recently, researchers have begun to ask, not which process (bottom-up resources vs. top-down predation)
dominates overall, but rather how these two forces interact under different spatial and temporal scenarios (Reid et
al., 2000).  Many scientists think that this new approach will help reveal “how resilient food webs are to the
combined effect of resource-mediated and predator-mediated forces” (Casini et al., 2008).  This suggestion leads
naturally to the view that ecosystems can be productively studied as Complex Adaptive Systems; that is, systems
that are characterized by their emergent properties, self-organization, and non-linear dynamics  (Holland, 1992;
Gell-Mann,  1994;  Allesina  & Pascual,  2007;  Brose  & Dunne,  2010;  Valdovinos  et  al.,  2010).   The  field  of
Complex Adaptive Systems (CAS) recognizes that these systems are generally robust and flexible, consisting of
multiple negative feedbacks that produce one or more “basin(s) of attraction,” i.e., the emergence of resilient,
system-level  patterns.   Indeed,  it  is  the identification of  the key feedbacks and their  contributions to  system
resilience that is the ultimate goal of ecological research.  

Advances in  computing technology have allowed for  more robust  in  silico simulations that  can model these
complex ecosystem dynamics in ways previously intractable.  In order to address certain limitations of purely
mathematical  models  (DeAngelis  & Mooij,  2005),  which  generally  simplify  individual  variation  and  spatial
representation, and represent global properties in a top-down manner, we have created a general CAS model of a
marine  ecosystem.   Central  to  a  more  flexible,  Agent-Based  Modeling  (ABM)  approach  (sometimes  called
Individual-Based  Modeling,  or  Agent-based  Complex  Systems)  is  that  the  outcomes  of  the  simulation  are



generated  in  a  bottom-up  design  process,  rather  than  via  top-down  constraints  (Grimm  et  al.,  2005).   It  is
important to note that the phrase “bottom-up” design has a somewhat different meaning in the CAS literature than
the similarly-worded “bottom-up” forces referred to in marine and terrestrial ecosystem literature.  A CAS-based
ABM implies  that  the  system-level  patterns,  such  as  population  growth,  aggregate  predation  rates,  etc.,  are
generated from the bottom up, rather than assumed as a “top down” constraint on the modeled system (see e.g.,
Epstein, 1999).  That is, the system-level patterns are emergent properties that arise from the interactions of the
autonomous agents  that  comprise  the simulated system.  Thus,  the method of computer  simulation relies  on
assumptions of agent attributes rather than agent outcomes.  (The similar phrasing in the ecosystem literature is
unfortunate;  one  might  come  across,  e.g.,  a  discussion  of  the  controlling  forces  in  constraining  a  particular
population: i.e., “bottom-up” forces of resource availability vs. “top-down” predation.  This is an entirely different
context than “bottom-up” emergence in an ABM.)

Here we present a general ABM marine ecosystem with a focus on key phenomena in population dynamics in the
context  of  the Red Queen Hypothesis,  also referred to  as  the “arms race” between antagonistic  species,  e.g.
predators and prey.  This model has been validated in previous work by replicating fundamental properties of an
ecosystem, including: the predator-prey oscillations found in Lotka-Volterra; the “stepped pattern” of biomass
accrual  from  resource  enrichment  found  in  Oksanen,  et  al.;  the  Paradox  of  Enrichment;  and  Gause’s  Law
(Carmichael & Hadzikadic, 2013).  In this work we will extend our understanding of found in Oksanen, et al., by
considering how these patterns of biomass accrual change when the predator population becomes more (or less)
efficient  at  catching  prey.   We  will  also  consider  these  changing  patterns  in  the  context  of  the  Red Queen
Hypothesis and how evolutionary pressures may be aligned with limits on the Red Queen effect, in ways that
could prevent an escalating arms race between predators and prey. 

2.0 Background
2.1 Previous Results
In previous work we validated the results of Oksanen, et al.  (1981), by showing that our agent-based model
(ABM) exhibits the “stepped pattern of biomass accrual” found in simple predator-prey dynamics.  Briefly, in a
three-trophic-level simulation (food, prey, predators), increasing the food available to the prey will  cause the
predators to increase in population but, surprisingly, does not change the population size of the prey themselves.
That is, even though the prey are able to eat more – and thus reproduce faster – with an increase in food, the
predators immediately match this change by consuming the extra prey that are now above the equilibrium level.
Add food at an even faster rate and the predator population will grow to an even higher population level, and
continue to consume all the extra prey.  Thus, when resources are increased to the prey, the prey population can
eat faster, and reproduce faster, but they are also consumed faster, while the predators alone increase in population
size.  This non-intuitive result matches the predictions found in Oksanen, et. al.  

Another consequence of this dynamic is that the predators do not increase their equilibrium consumption rate at
the per capita level.  Predator consumption rate does change when they are out-of-equilibrium, but only until the
new population level  is reached; at  that point  the  per capita consumption rate has returned to the predators'
equilibrium level of consumption.  Figure 2 illustrates the increased population size for the predators based on an
increased resource level for the prey, as well as the concurrent reduction in the prey's average age.

  

2.2 Model Description
This generative ABM is purposefully kept as simple as possible, in order to determine baseline properties and
consequences of  the  interacting populations  with as  few complicating  factors  as  possible.   In  the ecological
literature it is noted that the outcomes of this model are rarely if ever found in the real world.  This includes
Oksanen's results, Gause's Law, the Paradox of Enrichment, and even the Lotka-Volterra model of predator-prey

Figure 1: Population growth of predators (purple) based on increased resources to the prey population (left) and the concurrent 
change in the average age of the prey (right).  The simulation was run for 6000 time steps; resource rate was increased after 2000 
steps (a) from 0.06 to 0.12, and again at step 4000 (b) from 0.12 to 0.18.  Adapted from Carmichael & Hadzikadic, 2013.

a b



dynamics.  This incongruity is acceptable, even expected, as the real world attributes of various species are much
more complicated and nuanced than their simulated counterparts in our ABM.  However, it is incredibly difficult
to tease out which of these additional attributes are important and which are inconsequential.  A generative model
allows us to add complexity one layer at a time and determine, from a simulation standpoint, which are important,
and might therefore give us a better understanding of the many different food webs that are found in nature.

Therefore, the assumptions encoded in this model are relatively straightforward.  The food is grown on each patch
based on a “slider” in the user interface; as the slider is increased, the amount of food grown per patch, per
simulation time-step increases in a linear fashion.  The prey perform three basic functions during each turn: they
move at random, eat if there is food present, and increase their age.  They also reproduce asexually as a linear
function of how much food they have consumed.  The threshold for reproduction can be controlled by a slider;
however, this linear relationship can not be altered in this simulation.  The predators are exactly the same: they
move at random, eat if there is prey available, and increase in age during each turn.  Note that both the prey and
the predators have a slider labeled “turns per tick.”  This allows for additional control and experimentation, in that
the number of turns for each species during each simulation time-step can be altered, which changes the number
of actions performed each “tick” relative to the other populations.  The consequences of changing this controller is
discussed below.  As with the prey, the predators reproduce asexually as a function of the total amount of food (in
this case, prey) that is consumed.  In some experiments there is also a “top predator” that consumes the predator in
the same method that the predator consumes the prey.  This changes the dynamics of all the populations in various
ways; however, only the simple three-level model is discussed here.  All models were created using the NetLogo
modeling environment (Wilensky, 1999).

2.3 The Red Queen Hypothesis
The Red Queen Hypothesis was first introduced in 1973 (Van Valen) and expresses the idea of an “arms race”
between antagonistic species, such as predators and prey in a common ecosystem.  Given the intuitive benefits of
increased efficiency for a member of one species, it seems likely that an advantage in the phenotype would ensure
that  the  related  genotype  would  more  likely  survive  and  spread  on  evolutionary  time  scales  throughout  the
population.  However if, for example, the predators become better hunters, then there is assumed to be subsequent
pressure on the prey to also adapt, in order to better survive.  Once the prey adapt better survival techniques, then
the predators adapt again, and so on.

Given this theory the question naturally arises: why do species not continually increase in efficiency?  There must
be  some mechanism that  reduces  or  even  eliminates  continued  evolutionary  advantage.   The  first  and  most
intuitive answer is that there is a cost associated with efficiency increases and, at some point along a continuum
this cost is greater than the additional benefit.  Related to this idea is the natural diversity in abilities across the
prey species; in particular, individual prey that are very young, very old, or sick might generally have less ability
than those in their prime.  If this is the case, then a predator individual might have to work much harder for only a
slight increase in the number of prey who are susceptible to predation.

More subtly, there could also be certain predation strategies that work against continued spread of highly effective
genes in the population.  For example, many predator species share the results of the hunt, which raises the
possibility that the so-called “free rider” problem is a limiting factor, by conferring a benefit to a diversity of
predator individuals and not just the most effective hunters.  This reduces the gains for effective evolutionary
adaptations and therefore increases the cost-to-benefit ratio associated with such gains. 

In the present work the model described in section 2.2 is expanded to consider two alternative ways to increase (or
decrease) the efficiency of the predator population.  The outcomes of these two changes are then compared and
contrasted in terms of the effects on the population as a whole, for both predators and prey.  The second set of
experiments expands the model even further, to include an explicit “energy” requirement for individual predators
to move and hunt, and also a mechanism for evolving efficiency, but also with a concurrent change in the energy
expenditure required, so that an increase in hunting effectiveness requires a greater expenditure in energy.

3.0. Experimental Design – First Experiment
Here we consider two different methods for increasing (or decreasing) the efficiency of the predator population.
As noted in section 1.2, the number of “turns per tick” for the predators can be changed, which has consequences
for both predator and prey populations.  If this number is reduced, then the predator population as a whole has
fewer actions relative to the prey for a given period of time.  Another control for changing the attributes of the
predator population has been added to the model called the “predator success rate.”  In the baseline model if a
predator finds prey on its current patch it will eat one hundred percent of the time.  With this new controller there
is now a chance that the predator will “miss” the prey, or that the prey will escape.  



Intuitively these two different methods of controlling the predator population would seem to have very similar
effects; both act to reduce the effectiveness of the predator population.  If each predator has, for example, half as
many actions per time-step, that would seem to be similar in effect as if  each predator misses its prey half the
time.  However, as shown below, this turns out not to be the case.

3.1. Results – First Experiment
In the first case, where the number of turns per tick is reduced by one-third, the new equilibrium result is the
predator  population  is  higher,  also  by  approximately  one-third  (Figure  2).   Interestingly,  none  of  the  other
monitored outcomes change: not the prey population size, nor the prey consumption rate or average age, nor the
predators' relative consumption rate and average age.  Note that for the predators, changing the “turns per tick” in
reality does change their average age and consumption rate when compared to the prey.  However, the average
predator still consumes the same number of prey over its own lifetime; reducing the “turns per tick” by one-third
simply increases the predator lifetime by one-third, because a unit of “lifetime” is advanced during each turn, not
during a simulation time-step.

In the second case, we reduce the effectiveness of each predator, so that approximately one-third of the time the
predator will “miss” the local prey.  In this situation, however, we find quite a different result.  The predator
population does not decrease at all for being less effective hunters, but this does allow the prey population to
increase, by approximately one-third, and the prey average age also increases by a similar amount (Figure 3).  The
predator consumption rate is unchanged, but the prey consume food approximately one-third less often which,
perhaps paradoxically, reduces the total available food in the system (but by approximately one-half).

The first case above can be interpreted as a slowdown in the metabolism of all the individual predators; their
lifetime is longer relative to the prey, but they don't consume any more prey across that lifetime.  It is as if they
have  more  resources  available  during  a  simulation  time-step,  and therefore  the  predator  population  numbers
benefit from this effect.  The second case shows that even if all the predators become less effective hunters, by
missing their prey one-third of the time, their total population does not suffer in any way.  Conversely, if the
predators improve their hunting success, the prey suffer both individually and collectively, living a shorter lifespan
and displaying a concurrent drop in total population size.  If left unchecked continued predation improvements
would conceivably drive the prey to extinction.  And so the next set of experiments considers what mechanism is
sufficient to prevent this outcome.

Figure 2: Population and average age changes as predators' "turns per tick" is reduced by one-third.

Figure 3: Population and average age changes as predators' "success rate" is reduced by one-third.



4.0. Experimental Design – Second Experiment
Using the same generative model, “energy” is added as an explicit constraint on the individual predators.  Recall
that in the baseline model each predator tracts how many prey have been consumed, and they will generate a new
predator (asexual reproduction) once a threshold is reached.  This could be considered an accounting of energy
accumulation among the agents.  Energy is therefore added to this model by imposing a small “movement cost”
for the predators, reducing this accumulation by a small amount each turn.  

Each predator is instantiated with a “success rate” of 0.50; however, now each predator has a random chance to
mutate its own success rate in a way that is coupled to movement costs.  If the success rate is mutated higher, then
movement costs increase; if it mutates lower, then movement costs decrease.  Specifically there is a 1/1000 chance
for a positive mutation each turn, and a 1/1000 chance for a negative mutation.  Consuming one fish adds one unit
to a predator's accumulated resources, and for the following experiments movement costs are set as 1/100th of a
resource unit per turn, or 0.01 units.  

4.1. Results – Second Experiment
A series of simulation runs was conducted with various values coupling success rate with movement costs.  Figure
4 shows the results from five of these.  The top image reflects the outcome if, for every mutation of a 1% increase
in  efficiency,  the  individual  will  have  a  0.0001 increase  in  the  movement  cost  (from a  base  rate  of  0.01  –
therefore, also 1/100th of a change).  In the next image this trade-off was 0.0002 added to movement cost, for

every 1% increase in efficiency.  The third had a 0.00025 additional
cost; the forth, 0.0003; and the bottom is 0.0004.  

The top and bottom chart  both produce results that are meaningless,
under the definitions of this model.   When the trade-off is cheap for
additional hunting effectiveness (top chart, 0.0001), then the predators
keep evolving until they reach 100% effectiveness, catching a prey each
turn.  Of course the model doesn't allow more than 100% effectiveness,
so  this  result  is  ignored.   Similarly,  when the  trade-off  is  expensive
(bottom chart, 0.0004), then the predators will continually evolve to be
less and less effective hunters, in order to save energy.  This evolution
continues  until  the  predators  reach  an  average  movement  cost  of
approximately zero.  This is an invalid result, since the model assumes
all individuals will have a positive energy requirement for movement.

The  three  remaining  charts,  however,  show  that  there  is  clearly  an
equilibrium rate  for  predator  success,  where  the  individual  predators
will,  at some point, stop evolving their hunting effectiveness.  In the
second-from-top  chart  the  equilibrium  success  rate  is  high,
approximately  97%  on  average,  with  an  average  movement  cost  of
~0.015 (or about 50% more than at start).  The middle chart the success
rate is stable at 50%, with an average movement cost remaining very
close to the 0.010 baseline (start) amount.  And the second-from-bottom
chart stabilizes at a success rate of ~25%, with movement cost reduced
to ~0.003 (about 70% less than the start amount).

The most remarkable aspect of these experiments, adding a movement
cost to the predators and allowing hunting effectiveness to evolve, is
that the outcome for both populations is decidedly different than in the
previous experiment.  Recall that, if predator effectiveness was reduced
from 100% to ~67%, then this would benefit the prey, increasing their
equilibrium population size as well as their average age.  However, now
that  energy  is  explicitly  accounted  for  with  a  movement  cost,  and
individual effectiveness can only be reduced by reducing this movement
cost,  the  benefits  of  a  similar  change  no  longer  accrue  to  the  prey
population.  Figure 5 illustrates this result.  

The bottom most row in Figure 5 reproduces the second-from-bottom
chart  in  Figure  4,  where  the  predators'  individual  effectiveness  is
reduced from 50% to approximately 25%.  Rather than benefiting, the
prey population is reduced in size by a very small amount.  Conversely,

Figure 4: Evolved predator success rate, for 
five different levels of trade-offs between 
changes in effectiveness and changes in 
movement costs.  The first and last (top and 
bottom) results fall outside of the model's 
parameters; however, the middle three charts 
show the results of low, medium, and high cost
trade-offs.



the predator population increases quite dramatically: their final population size is double that at the start of the
simulation,  and their  average age has increased  as  well.   Clearly  they have benefited  from the  reduction  in
movement costs,  living longer while eating less,  and not significantly reducing the overall  size of their  prey
population.  When the trade-off is high, predators will choose to reduce their efforts, both individually and as a

collective.

A moderate trade-off (0.0025, middle row) and a low trade-off (0.002, top row) both produce less of a change,
especially  the  moderate  trade-off.   As  we can  see,  the  moderate  trade-off  results  in  a  hunting  effectiveness
equilibrium that is almost unchanged, still at ~50%, and a movement cost that is nearly the same as well: 0.01
units per turn.  As such, the population size and average age for both predators and prey is virtually the same at the
start as at the end of the simulation run.  Even though the individual predators could evolve to hunt better (or
worse), at this trade-off they do not.  

The low trade-off condition (0.002, top row) does have negative consequences for both populations.  Recall from
Figure  4  that  the  predators  increase  their  hunting  effectiveness,  from 50% to  very  nearly  perfect,  ~97% on
average.   In  the  original  model  that  doesn't  account  for  energy  costs,  this  would  be  harmful  for  the  prey
population, but not affect the predators at all, in either population size or average age.  Here, things are different.
The prey population experiences an almost imperceptible decrease in size, while the predators experience a ~40%
decline in numbers, and a ~30% decline in average age.  The lesson seems to be: when predator success comes too
easy, everyone loses.

5.0. Discussion and Future Work.
In our previous results we showed how increasing the food to the prey population does not truly help the prey;
rather, only the predator population increases in size.  Because of this increase in predators, the prey are consumed
faster than otherwise: they eat faster and reproduce faster, but since there is no change in the predators' hunting
ability, the prey must also have a shorter lifespan when there are more predators.  The Red Queen Hypothesis
raises  questions,  however,  about  the  predators'  effectiveness:  what  happens  when  this  is  changed?   And  in

Figure  5: Low cost trade-off (top row), medium cost trade-off (middle row), and high cost trade-off (bottom row), between
changes in  predation effectiveness  and changes in  movement  costs.   The middle  column displays the resulting  changes in
population levels for the predators (purple), prey (red), and food (green).  The right-most column displays the resulting changes
in average age for each population.



particular, can we discover the minimal conditions that put a limit on such change?

In  the  first  set  of  experiments  we  adjusted  this  effectiveness  directly,  by  simply  dictating  how  often
(stochastically) the predators would miss catching a prey.  This potentially helps us understand the net effect on
population levels that the Red Queen Hypothesis can have, but doesn't help explain the mechanism that will get us
there.  Absent a detailed study it may be assumed that both the predators and the prey should adapt endlessly,
engendering an arms race in their antagonistic abilities.  The second set of experiments, however, explicitly allows
for a trade-off between the amount of energy expended by individuals vs. their success rate, so that they can
improve, but only at a cost.  Conversely, the predators can also reduce their effectiveness in order to conserve
resources.  As this simulation shows, when the trade-off is high this is exactly what they will do.

Throughout  this  paper  we  has  assumed  that  improving  or  reducing  predation  effectiveness  has  been  an
evolutionary mechanism; i.e., through the mutation and spread of changes in the genotype.  This is taken from the
original formulation of the Red Queen Hypothesis.  But these models are not limited to that interpretation.  The
changes are abstracted into a very simple measure of effectiveness, and this could also be interpreted to mean that
the predators simply learn to become more (or less) effective hunters.  Thus the applicability of this model is much
broader than just changes on the evolutionary scale.  

There is much more to be done in future work.  The most obvious is to put similar energy constraints on the prey
population as well as the predators.  If they can also adapt their ability to escape predation, given similar resource
trade-offs, how will they react, both individually and collectively?  Another consideration is to instantiate a more
complicated food-web.  Due to the constraints of the Competitive Exclusion Principle there is not yet a simple
way  to  add  (and  preserve)  multiple  species  at  a  particular  trophic  level.   However,  we  can  easily  add  and
experiment with a “top predator,” in order to extend the food chain to a four-trophic-level system.  As seen in
previous results this addition will affect all population levels, in both size and average age.  While we expect it is
the size of the changes and not the direction that would be affected, it remains to be seen if the results presented
here are robust to such an addition.

Conclusions
Even in a simple model of population dynamics with very basic assumptions we find many outcomes that are
non-intuitive in nature.  The power of this ABM, however, is that by understanding the fundamental properties in
the simplest model first we can perhaps better understand how additional and more complicated factors affect
dynamical food webs in the real world.  Further, an ABM allows us to monitor many aspects of these simulated
populations that are difficult or impossible to monitor for their real world counterparts.  For example, average
consumption by a predator population would be time- and resource-intensive to record in the field, while in a
simulated environment it is elementary.  Even more exciting however is the possibility that a properly calibrated
ABM – one that is grounded to a specific, real-world food web – might also provide other simulated measures that
can be collected in the field, and that make it possible to infer those that cannot be.  For example, the average age
of each population is  a variable  that  has particular  (and sometimes non-intuitive)  characteristics  that  at  least
indicate what (for example) average consumption rates might be.  Average age is much easier to record in a
real-world environment, and so a realistic and grounded ABM has the potential to provide information that is
difficult or even impossible to collect any other way.
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