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Abstract

We present an agent-based model of cultural evolution based on dual-
inheritance theory. We model populations of interacting and learning
agents with vertical transmission of cultural traits indirectly biased by
co-evolving preferences for certain external markers, as well as horizon-
tal transmission of cultural traits via model-based, frequency-dependent
guided variation. We further analyze the cultural dynamics of these pop-
ulations over a large number of generations. We present some preliminary
results that show biased vertical transmission leading to the emergence of
transient clusters of externally and culturally homogeneous agents. We
also note that the guided variation mechanism leads to faster drift towards
a global monoculture.

1 Introduction & Motivation

Cultural practices structure human conduct in contexts ranging from modes
of governance and natural resource management to conflict resolution, power
relationships and religious practices. Due to their wide-ranging effects and ob-
served persistence, such practices can serve as either seemingly insurmountable
roadblocks or powerful catalysts for problem solving in different areas of life,
such as economics, politics or international relations. We can consider the ex-
ample of climate protection. Global climate change is to a considerable degree
driven by specific human-developed natural resource management practices, de-
termined by values, beliefs and social institutions (Tohme 1992). Another area
of application is the question of opinion radicalization in social groups. Pre-
vious data-driven research has shown that the emergence of specific forms of
terrorism is related to differentiation in cultural dimensions and the absence of
cultural engagement in individuals (Kluch and Vaux 2015). If we could properly
understand the life-cycle of cultural practices, we would be better equipped to
solve complex issues in these areas of interest. Here we outline an effort to de-
velop a more powerful explanatory model of the complex long-range dynamics
of cultural practices in human societies and present some preliminary results.
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The model presented here is embedded in the dual-inheritance theory of
cultural evolution, which assumes both horizontal (intra-generational) and ver-
tical (inter-generational) transmission of cultural traits in a population of social
actors (Boyd and Richerson 1985). With the help of this model, we wish to ad-
dress two related questions. First, can persistent cultural clusters emerge solely
through vertical transmission of cultural traits indirectly biased by co-evolved
preferences for specific external markers? Second, does horizontal transmission
in the form of model-based, frequency-dependent guided variation also aid such
cultural clustering?

Many decisions that individuals and societies face are largely arbitrary:
What does the sequence of characters “tree” signify? When is it appropriate to
accept a gift from someone? It often matters more whether the actors can even-
tually coordinate on a decision, rather than which of the many alternatives is
chosen. Under such circumstances it becomes important to the actors knowing
which partners to trust to think and act the same way. In this light, the first
question then asks whether it is possible for a population of actors to culturally
coordinate over many generations if they base their trust in arbitrary markers,
and if this is the case, whether the markers can co-evolve into signs of cultural
affinity. The second question then asks whether the cultural coordination is
more effective if agents can also adjust their own cultural behavior based on the
recommendations of actors they deem trustworthy. To determine what kinds of
macro-scale phenomena these mechanisms produce in different qualitative types
of human societies we develop and analyze an agent-based model where individ-
uals enter into dyadic interactions with others based on co-evolving preferences
for external markers and attempt to solve simple coordination problems.

2 Background

In modern anthropology neo-evolutionary theories have discarded several con-
cepts of classical social evolutionism; doing away with notions of social progress
and determinism. Neoevolutionism embraced stochasticity and individual decision-
making among other driving forces of cultural emergence. Nevertheless, it re-
mained firmly grounded in the Darwinian evolutionary framework (e.g. Sahlins
1960). In the biological sciences, evolutionary explanations of culture emerged
under the heading of sociobiology. Wilson (1975) pioneered this approach, tak-
ing a strictly genetic view of cultural evolution. These ideas were rejected by
many intellectual opponents, claiming them to be biologically deterministic and
ehtnocentric (Sahlins 1976, Gould 1981, Lewontin et al. 1984).

Dual-inheritance theories respond to this strain of research and hypothesize
that culture is transmitted in human populations both vertically–from gener-
ation to generation–by forces that can be modeled with mechanisms similar
to biological evolution, as well as horizontally–within generations–by social in-
fluence. Boyd and Richerson (1985, 2005) use genetic evolution as a partial
metaphor for the evolution of culture, although they point out major differences.
Most importantly, genetic evolution drivers such as selection for reproduction,
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gene recombination and mutation act on the genotype of individuals, while
only indirectly affecting the phenotype. In B&R’s model of cultural evolution
the phenotype is also affected directly by social forces of cultural transmission.
Particularly important in this model are the concepts of biased transmission
and guided variation. Biased transmission is based on the notion that the co-
evolution of preferences for specific phenotypic variants can drive the selection
of certain genetic (or in this case cultural) variants. Guided variation then
serves the purpose of transmitting cultural trait variants within a single gener-
ation. The process of guided variation depends on an adaptive standard that
determines which cultural variants are learned. In our case the chosen adap-
tive standard is model-based (actors mimic behaviors of preferred model agents)
and frequency-dependent (actors mimic behaviors which are encountered more
frequently).

Within computational social science, researchers have also contributed to-
wards explanations of cultural dynamics. One of the most influential ABMs of
culture is due to Axelrod (1997). A number of agent-based modelers have since
revised and extended Axelrod’s original model (e.g. Klemm et al. 2003, Parisi
et al. 2003, Centola et al. 2007, Flache and Macy 2011).

However, these models assume agents possess perfect knowledge of their
neighbors’ cultural “genotype”. Moreover, they only model horizontal trans-
mission of cultural information. Other agent-based models of culture have at-
tempted to circumvent the former shortcoming. Bednar and Page (2007) created
models in which agents play several games with different payoff matrices, repre-
senting cultural domains. Agents possess limited cognitive capacities and their
rule sets for both games are forced to overlap to a certain degree. A differ-
ent approach to represent agents’ indirect inference of others’ cultural traits is
the use of observable tags. Hales (2000) developed a model in which agents
played one-shot prisoner dilemma games only with agents possessing the same
tag. Hammond and Axelrod (2006) also made use of tags in their agent-based
model of ethnocentrism. Finally, Reynolds (1994, 2008) has developed the class
of cultural algorithms, introducing vertical transmission. These models are ge-
netic algorithms in which agents evolve based on their performance against a
fitness function and a belief space, which consists of the cultural genotypes of
top performers. The rest of the population then acquires traits from this space
via an influence function.

It is evident from this concise review that computational cultural models can
be useful in exploring cultural dynamics, however none of the existing designs
can sufficiently implement the proposed theoretical framework. While each
of the computational models reviewed in this section implements a subset of
required mechanisms, no one incorporates the full set (see table 1).
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Axelrod 7 3 3 7
Klemm et al. 7 3 3 7

Parisi et al. 7 3 3 7
Centola et al. 7 3 3 7

Flache & Macy 7 3 3 7
Bednar & Page 7 3 7 3

Hales 3 7 3 3
Hammond & Axelrod 3 7 7 3

Reynolds 3 7 3 7
Revay & Cioffi 3 3 3 3

Table 1: Design comparison of relevant agent-based models of cultural dynamics.

3 Model design

We develop an agent-based model to test and analyze the effects of biased
transmission and guided variation on the evolutionary dynamics of the cultural
makeup of social actors 1.

The model is based on several assumptions about the behaviors of the indi-
vidual actors:

1. Individuals interact in dyads, in a number of contexts, in which they seek
to successfully coordinate their efforts.

2. Individuals have the ability to categorize others based on their external
markers.

3. Individuals will tend to select interaction partners based on external mark-
ers that they prefer.

4. Individuals have the ability to assess previous interactions to an extent,
and designate preferred markers based on this history.

5. Individuals have the ability to learn to imitate the cultural behaviors and
attitudes of other actors, at a certain cost to their well-being. Cultural
learning is assumed to be costly because it interferes with other activities
such as securing natural resources for survival.

6. Individuals have limited knowledge in the sense that they do not have
any concrete information on another actor’s cultural attitudes before an
interaction takes place.

7. Individuals inherit the external markers and cultural attitudes from their
ancestors.

1The model is written in the MATLAB programming language. The code of the model is
publicly available at www.openabm.org/model/5243
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8. An actor’s well-being increases when they are able coordinate with others.
It decreases when they are unable to coordinate.

Based on these assumptions, we test the following hypotheses:

• H1: Interaction biased by actors’ co-evolved preferences for specific exter-
nal markers, iterated over the course of many generations, is conducive to
the emergence of stable clusters marked by the presence of shared cultural
attitudes.

• H2: Guided variation in the form of model-based, frequency-dependent
imitation is conducive to the emergence of stable cultural clusters.

The model consists of a large number of agents that are activated in discrete
time steps and a mechanism for repopulating the simulation with new genera-
tions of agents at equally spaced intervals. The model is then instantiated in
several versions. In the first version the agents possess the following attributes:

1. Indicator: A set of observable external markers, which can be physiolog-
ical (e.g. skin tone), material (e.g. clothing) or immaterial (e.g. accent).
By design they are always known to other agents. Indicators are repre-
sented as integer scalars on a categorical scale. The range is given as a
parameter.

2. Preferences: A mental list of indicators that each agent uses to deter-
mine with whom they would prefer to interact. The size of the list is
limited by the agent’s memory parameter. It can be updated throughout
an agent’s life based on experience from past interactions. Preferences are
represented as integer vectors.

3. Cultural Traits: A list of traits which represent different dimensions
of social life (e.g. language, gift-giving). Every agent possesses one of
many possible variants in each trait (e.g. ‘English’, or ‘always bring a gift
to a dinner party’). Trait variants can change during an agent’s lifetime
through learning. Each trait variant is represented as an integer scalar on
a categorical scale. The range is given as a parameter.

4. Fitness: A measure of the agent’s ability to coordinate with others. Fit-
ness is represented as an integer scalar on a cardinal scale.

It is important to note that we do not assume any initial relationship between
the external markers and the cultural variants. On the other hand, one of the
objectives of the model is to determine whether any relationship between them
can co-evolve in the system.

In each time step every agent will seek to interact with another agent. An
agent who wishes to initiate an interaction will randomly select one of their
preferred indicators and seek out a potential partner with that indicator. If
the preference list of the potential partner includes at least one instance of the
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initiator’s sole indicator the two begin the interaction2. The interaction itself
consists of randomly selecting a cultural trait and comparing the variants of
the agents in that trait. If the variants match, the interaction is considered a
success and both agents receive a fitness boost. If the variants do not match,
both agents will incur a penalty to their fitness. Moreover, if the interaction
is successful the agents will add their partner’s indicator to their preferences.
At the same time the agent will clear the least recent preference, as it will now
consider it out-dated.

After a set number of time steps in which each agent is activated, the pop-
ulation is processed by an evolutionary algorithm. The algorithm first selects a
subset of the agent population based on their fitness. This is done by fitness-
proportionate, or roulette-wheel selection. That is, if an agent A has a fitness
that is k times the fitness of agent B, then agent A has a k times higher prob-
ability of being selected. The probabilities are normalized so that they sum to
unity. A single agent can be selected multiple times. After the subset of these
“parent” agents has been identified, “offspring” agents who inherit their par-
ents’ attributes are created. This represents primary socialization during the
course of which offspring acquire indicators as well as cultural trait variants and
preferences by imitating their parents. After the offspring have been created,
their attributes are randomly mutated with small probability. This represents
the often imperfect socialization process, as offspring often differ from their
parents in the details of their cultural makeup. Finally, the original population
is removed from the system and the newly created offspring make up the new
generation of agents. The size of the population is kept constant.

The design of the agent architecture and the interaction mechanism in this
first version of the ABM is motivated by B&R’s (1985) model of biased transmis-
sion. Here, the agent’s cultural genotype (consisting of its cultural trait variants
and its preferences) as well as the phenotype (the indicator) are vertically trans-
mitted from generation to generation. The transmission of the cultural traits is
effectively biased by the agent’s preferences. However, the preferences will also
face selection pressure 3. In a subsequent version of the model a mechanism for
horizontal transmission is added, representing forces of guided variation (Boyd
and Richerson 1985). This calls for the inclusion of additional agent attributes:

1. Learned Traits: Cultural trait variants that the agent has encountered
through learning. An agent retains a certain number (given by its memory
size) of variants of each trait encountered in learning experiences. The lists
are used to strategically update agent’s own cultural trait variants.

2. Learning Frequency: The number of times the agent will learn during
its lifetime. The learning frequency is also inherited from parent agents.

In this iteration agents will, apart from standard interactions, also attempt

2If there is no agent in the population with the chosen preferred indicator, then no inter-
action takes place and the agent is punished as if it were an unsuccessful interaction.

3Selection pressure is expressed in terms of the relative reproductive disadvantage of one
phenotype over another in a given environment.
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to ”learn” new trait variants in random time steps from other agents. Once the
learning algorithm is activated, the ego agent will again randomly select one of
its preferred indicators and seek out a potential alter with the given indicator.
A random cultural trait is selected and the ego copies the alter’s variant on that
trait and stores it as one of its learned variants for the given trait. At the same
time the ego will clear the least recent learned variant, as it will now consider
it out-dated. Both agents then incur a penalty to their fitness, regardless of
outcome. Finally, the ego then assesses its list of learned variants associated
with the selected trait and chooses the most commonly appearing variant in the
list to become its own trait variant.

In the following sections we analyze the performance of the base model, and
we test its sensitivity to the following parameters and additional features:

1. Agent memory size (Model I)

2. Exploration rate (Model II) 4

3. Range of cultural trait and indicator variants (Model III)

4. Guided variation (Model IV)

4 Results

We first comment on the behavior of the base model (Model I with memory
size m=1). In this model we instantiate a population of 100 agents who each
possess one of 10 possible variants in a single cultural trait. Each agent also
possesses one of 10 possible indicators. The indicators and trait variants are
assigned randomly from a uniform distribution. Each successful interaction
adds 1 point to the agents’ fitness, an unsuccessful one results in a subtraction
of 1 point from their fitness. The agents have a memory size of 1. Because
agents are initialized with fictional memories, they will only interact with the
same types of agents throughout the simulation and never change preferences
(because any successful interaction will have already taken place with the agent’s
preferred type of partner). There is no exploration. The simulations last for
100 generations, each generation consisting of 20 rounds5. Figures 1(a),(b) show
fan plots 6 of the dynamics of the best performing trait variants and indicators
over time. We observe that the variability between runs is quite large: in

4The exploration rate will define the probability of an agent being forced to interact with
a random partner regardless of its preferences. In the original specification of the model the
diversity of an agent’s preferences can only decrease over time. Once a certain type of agent is
eliminated from its preferences it may never interact with it again. In reality, circumstances
might sometimes force actors to interact with unwanted partners. This can lead to increasing
the diversity of the agents’ preferences over time.

5A round consists of n random agent activations, where n is the population size.
6A fan plot aims to visualize the uncertainty that surrounds repeated simulations of time-

series. Each shaded region shows a different percentage of the range of outcomes. The lighter
the color, the larger the percentage of the range encompassed within that region.

7



Figure 1: Model I: Statistics for simulations with different agent memory sizes
m (100 runs each).
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(a) Best trait variant, m = 1
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(b) Best indicator, m = 1
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(c) Best trait variant, m = 5
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(d) Best indicator, m = 5

Generations
0 20 40 60 80 100

Sh
ar

e 
of

 b
es

t t
ra

it

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(e) Best trait variant, m = 15
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(f) Best indicator, m = 15
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(g) Trait drift
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(h) Indicators after end of run
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some runs the trait distribution drifts to a single variant after the first few
generations; in a few others there is no clear trend towards a single cultural
variant 7. However, by the end of the last generation a vast majority of runs
has drifted to a single trait variant. The indicator distribution also invariably
narrows to a considerable degree over time. In a significant number of runs the
distribution drifts once again to a single value. In several of the remaining runs
the distribution settles into a bimodal state with two more or less equally strong
indicators.

4.1 Memory size (Model I)

Figures 1(c)-(h) show the effect of increasing the memory size. At first when the
memory size is increased, the agent populations show a trend towards faster drift
to a single trait variant. The increases in memory size also lead to higher overall
drift rates. However, as the memory size increases even further, specifically
when m > 6 (or about a third of a generation length), the drift in cultural
traits begins to slow down once again and this continues until the maximum
memory size of m = 20 is reached. The overall drift rates remain high even as
the memory length increases continue. The indicator distributions also respond
to increasing memory size, albeit in a different way. We observe that as memory
size increases, the ratio of agent simulations which result in a bimodal indicator
distribution grows substantially larger (see figure 1(h)). In these cases, the
population is divided into two groups of roughly the same size marked by two
different indicators.

4.2 Exploration rate (Model II)

Figures 2(a)-(h) show the dynamics of the system under different values of the
exploration rate, with memory size m = 5. We note that small perturbances
in the agents’ preferences (i.e. low non-zero exploration rates, specifically e =
0.1) contribute to a slightly slower drift in the trait variant distribution. On
the other hand the low exploration rate is more conducive to drift towards a
single indicator. However, as the exploration rate is further increased (e ≥
0.2) the drift in cultural traits becomes even faster than in model version I
with no exploration. Finally, as the exploration rate nears its limits (e ≈ 1),
thus overriding any agent preferences and rendering indicators irrelevant, the
indicator distribution ceases to drift away.

7Genetic drift is the change in the frequency of a gene variant in a population due to
random sampling of genotypes (Masel 2011). Here we define that a simulation has drifted
towards a single variant occurs at the first point in time when a single indicator or trait
variant reaches a 95% share of the population. Absolute homogeneity (100%) can never be
achieved due to random mutation. The value of 95% was chosen because in every run this
mark was achieved, the share then never dropped below it again.
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Figure 2: Model II: Statistics for simulations with different exploration rates e
(100 runs each).
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(a) Best trait variant, e = 0.1
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(b) Best indicator, e = 0.1
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(c) Best trait variant, e = 0.5
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(d) Best indicator, e = 0.5
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(e) Best trait variant, e = 1
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(f) Best indicator, e = 1
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(g) Trait drift
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Figure 3: Model III: Statistics for simulations with different indicator (I) and
cultural trait variant (T ) ranges (100 runs each).
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(a) Trait drift

Generations
0 20 40 60 80 100

%
 i
n

d
ic

a
to

r 
p

o
p

u
la

ti
o

n
s
 d

ri
ft

e
d

0

10

20

30

40

50

60

70

80

90

100

T=10, I=10
T=100,I=10
T=1000,I=10
T=10,I=100
T=100,I=100
T=1000,I=100
T=10, I=1000
T=100, I=1000
T=1000, I=1000

(b) Indicator drift

4.3 Indicator and cultural trait variant ranges (Model III)

Figures 3(a),(b) reveal the regimes of the system behavior with different ranges
of indicators and cultural trait variants. We observe that both indicator and
trait drift is more more common in configurations where either the indicator
range does not exceed the population size. Drift rates in both distributions
decrease when the range exceeds population size. We also note that the drift
rate is more sensitive to the range of indicators than the range of the trait
variants. Moreover, the change in drift rates is not monotonic with respect to
the indicator range: both the indicator and the trait populations drift at higher
rates once the indicator range is increased from 10 to 100, only to see this trend
reversed once the range is further increased to 1000.

4.4 Horizontal transmission (Model IV)

Figures 4(a),(b) illustrate the differences in behavior of the agent simulations
in situations with and without horizontal transmission of cultural traits. We
note that the addition of the horizontal transmission mechanism results in a
higher drift rate in the trait variant distribution and overall faster drift times.
Moreover, the drift rate towards a single indicator is also higher in the case that
includes inter-agent horizontal transmission. The percentage of simulations that
result in bimodal indicator distribution remains roughly the same in both cases.

5 Discussion

5.1 Main Results

At its core the evolving system of agents is a simple hill-climber. This is best
demonstrated in model version II in the case when e = 1. Even when indicators
are taken out of the equation and agents attempt to blindly coordinate with
random interaction partners, the evolutionary forces of genetic drift weed out
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Figure 4: Model IV: Statistics for simulations with and without horizontal trans-
mission (100 runs each).

(a) Trait drift (b) Indicator drift

those who are in the minority (i.e. those who have a lower probability of coor-
dination with a randomly selected agent), until eventually a single trait variant
spreads into the cultural genotype of the entire population. In this light we can
deduce that when the vertical transmission cultural traits is indirectly biased
by preferences for specific indicators, it acts as a culturally divergent force, by
slowing down the drift in the population-wide trait variant distribution.

In model version I without exploration and a trivial memory size of 1 the av-
erage number of interactions during an agent’s lifetime as well as the percentage
of successful interactions soars very early (see figure 5(a),(b)). After the first
few generations nearly every interaction is successful. However, at this stage
neither the indicator nor the trait variant distributions have drifted away (see
figure 5(c),(d)), and there are numerous unique variants still present in the pop-
ulation. These two facts point to the presence of several distinct indicator-trait
variant pair clusters within which agents are able to coordinate with each other.
Figure 5(e) shows an example run where this phenomenon occurs. Within these
clusters the indicators effectively begin to function as culturally defined signs of
socialization, informing agents of suitable interaction partners. In most cases,
after this first part of the run where the clusters are established, the indicator
and trait variant distributions eventually settle on a single value due to genetic
drift (Boyd and Richerson 1985, pp. 271-279).

Agent memory size has proven to affect the behavior of the system. In the
low to middle ranges of the memory size parameter the speeds and rates at which
indicator and cultural trait drift happen are higher. This is because although the
agents get to sample a wider range of the indicator spectrum in the beginning,
they are able to keep a high success ratio, thanks to the efficient updating of
preferences. Due to these factors the population quickly crystallizes into a single
trait variant group with one or two indicators present, skipping the clustering
phase altogether (see figure 5(c),(d)). However, in the high end of the memory
size spectrum the drift in the trait variant distribution once again decelerates
noticeably. This is because it takes the agents longer to flush out ineffective
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preferences from their memories. Even if an agent records several successful
interactions a large number of unproven or out-dated indicators remain in its
list of preferences. This is demonstrated by the very low number of interactions
and the low success rates in the early simulation stages of such configurations.

It might seem counter-intuitive that increasing the exploration rate would
result into faster drift towards a single trait variant and a single indicator.
However, Figure 6(a) shows us that in configurations with higher exploration
rates, agents interact significantly more often in the beginning stages of the
simulation; resulting in heightened selection pressure. The main difference is
that in populations where the indirect bias acting on vertical transmission has a
larger effect, the indicators begin to serve as cultural signs for the other agents,
thus also becoming a constituent part of the agent culture.

Unsurprisingly, significantly broader ranges of possible indicators and cul-
tural trait variants have resulted in the inability of the agents to coordinate,
at least in the time-spans analyzed in this study. As the range of possibilities
becomes larger, the probability of encountering an interaction partner with the
same trait variant in the beginning of the simulation decreases proportionally.
Moreover, the probability of the presence of a preferred indicator for any given
agent also decreases with any increase in the indicator range. This results in
a much lower number of interactions between agents (see figure 6(b)) which in
turn considerably slows down the evolutionary process. The higher sensitiv-
ity to the indicator range is explained by the causal precedence that indicator
choice takes over trait interactions: for the interaction to take places, one must
first find a suitable indicator. At this moment it is unclear what causes the
non-monotonic drift rates with respect to increasing the indicator range.

The addition of the horizontal transmission mechanism resulted into cultural
trait and indicator drift occurring more rapidly and more often on average.
This is despite the fact that learning is costly and thus results into a fitness
penalty. Indeed, the average agent fitness is consistently lower. On the other
hand, the fitness distribution is more negatively skewed during the first few
generations (see figure 7(a),(b)). This exerts higher selection pressure on the
under-performing individuals, which in turn triggers a faster drift-away process
in the agent population. However, we also observe that the role of horizontal
transmission quickly deteriorates as the simulation progresses (figure 7(c)). We
hypothesize that this is because selection will initially favor those individuals
who do not spend resources on learning. These individuals will then take over
the population before any positive effect of learning appears.

5.2 Implications for Future Research

We have seen that if dissonance in cultural trait variants is punished and suc-
cessful coordination is rewarded, while assuming vertical transmission of cultural
traits, genetic drift will drive a population of agents toward a single cultural trait
variant. When preferences for certain external markers are further assumed the
resulting indirect bias on the cultural traits results in slower drift. Moreover,
for certain parameter configurations (described in 5.1) this mechanism leads
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Figure 5: Model I: Additional statistics for simulations with different memory
sizes m
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(b) Succesful interactions
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(c) Unique trait variants
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Figure 6: Average number of agent interactions per generation for different
model versions.
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(a) Model II: Variable exploration
rate
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Figure 7: Model IV: Additional statistics for simulations with horizontal trans-
mission.

Generations
1 1.5 2 2.5 3 3.5 4 4.5 5

Av
g.

 fi
tn

es
s

-30

-20

-10

0

10

20

30

40
Horizontal transmission
No horizontal transmission

(a) Average fitness

Generations
1 1.5 2 2.5 3 3.5 4 4.5 5

Av
g.

 fi
tn

es
s 

sk
ew

ne
ss

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5
Horizontal transmission
No horizontal transmission

(b) Fitness skewness

Generations
0 20 40 60 80 100

Av
g.

 le
ar

ni
ng

 fr
eq

ue
nc

y

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

(c) Learning frequency

to the presence of several “cultural clusters” in which all agents share a single
indicator-trait variant pair. However in a majority of cases these clusters are
unstable, eventually collapsing into a single homogeneous culture. In some cases
such clusters remain present throughout the entire simulation. Nonetheless, we
hypothesize that in such cases an eventual collapse into a homogeneous culture
might also occur at later times. This does not reflect the reality of human cul-
tures well, because we witness persistent clustering (local convergence offset by
global diversity) in most cultural domains: the existence of different religions,
nation-states, languages, etc.

For this reason future research on cultural evolution should consider addi-
tional factors which influence the clustering of population into distinct cultural
groups. We propose several features that we wish to implement in subsequent
versions of the model:

1. Spatial and network representations

2. Ordinal scales of cultural features

3. n-adic interactions
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4. Homophily

5. Alternative selection and reproduction methods

6. Multiple/dynamic indicators

7. Discovery of new cultural variants and traits

Finally, in this study we have only analyzed the performance of indirectly
biased vertical transmission and model-based frequency-dependent horizontal
transmission as hypothesized driving forces of cultural evolution. However, we
have not discussed the question of how these mechanisms could have evolved
themselves and become selected by evolutionary forces as the ultimate drivers
of culture formation. In fact, based on the analysis of our model, horizontal
transmission did not prove to be advantageous under our assumptions. The
costs simply outweighed the benefits before they could show their full effect.
It is important to note that the costs and rewards were simply selected to be
equal in magnitude. It is difficult to select any other ”natural” set of payoffs
without further research and validation. However, for the reasons stated above,
the sensitivity of the system with respect to different sets of payoffs should be
explored in the future.

6 Conclusions

We have developed a model of vertical transmission of cultural traits indi-
rectly biased by preferences for external markers and model-based, frequency-
dependent horizontal transmission in populations of interacting and reproducing
agents. Based on analysis of preliminary results, we have shown that evolution-
ary forces of selection and reproduction alone, acting on populations where
dissonance in cultural trait variants is punished and coordination rewarded,
contributed to a rapid drift toward a homogeneous culture marked by a single
trait variant shared by all agents. The addition of the indirectly biased vertical
transmission of cultural traits acted as a culturally divergent force. Moreover,
in certain parameter value regimes, the indirectly biased vertical transmission
mechanism resulted into transient cultural clusters of agents marked by a com-
mon indicator-trait variant pair shared by members of the group. This finding is
in line with our first hypothesis. This meant that the indicators effectively com-
menced to serve as cultural signs. However, these clusters were not permanent
and in most cases eventually collapsed into homogeneous monocultures. Fi-
nally, the addition of model-based frequency-dependent horizontal transmission
led once again to more rapid and more common drift events in both the indi-
cator and cultural trait variant distributions. Thus, our second hypothesis that
horizontal transmission facilitates cultural clustering has not been supported.
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