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Abstract—Agent-based Computational Economics (ACE)
refers to modeling an economy as a complex adaptive system
of agents. Empirical studies have shown the importance of
product space complexity for innovation and macro-economic
value [1], [2]. Despite the significant literature on ACE, a missing
component in most models is the incorporation of evolutionary
dynamics, in particular a larger product space subject to evolu-
tionary forces. This study explores the role of having a diverse
product space for the evolution of the product transformation
network. We demonstrate the importance of having a larger
product space to observe systemic growth due to entrepreneurial
support interventions. In particular, we use our agent-based
innovation ecosystem model, EconoSim, followed by a traditional
ACE model, to showcase the importance of evolutionary dynamics
for policy experimentation using ACE. Experimental results of
entrepreneurial support interventions on both models support
our argument that the heterogeneity in the product space and
the underlying evolutionary structure of the ACE model are vital
for innovation and innovation-related policy experiments.

I. INTRODUCTION

The neoclassical approach for studying economic ecosys-
tems utilizes statistical general equilibrium models. This ap-
proach is founded on the assumption that an economy actually
exists in equilibrium [3]. However, during a financial crisis or
a shock such as the introduction of new start-up companies
into a local economy, the system is pushed out of equilibrium
giving rise to various research questions. Will the system ever
reach the previous equilibrium again? What modifications can
be done to improve the system with least disturbance to the
prevailing equilibrium? Or even: will the system simply fail
to reach equilibrium and collapse inevitably? Answering these
questions demands the application of a dynamic modeling
technique. Agent-Based Computational Economic(s) (ACE)
models have been shown to tackle the problem of unstable
equilibria by modeling microeconomic interactions. However,
there are fundamental differences in the design of ACE models
according to the economic phenomena that each model aims
to investigate.

Classical agent-based macroeconomic models used repre-
sentative agents; agents are stereotyped into households, firms
and banks [4], [5]. During a simulation step each agent selects
a subset of agents out of a fixed population of agents to trade
with. Production and demand functions govern the quantity
traded and the trade partner selection processes. These models
provide an excellent basis for experimentation on economic
processes between these agent types and understanding how

macroeconomic values such as GDP change non-linearly with
the micro-interactions between households and firms.

However, the classical approach tends to consider transac-
tions within a limited product space. Although a restrictive
product space is sufficient for studying how economic growth
changes within a short timespan, it is important to consider
the entry and exit of new products into the market in the
long run in order to model cycles of innovation [6]. Having
a larger product space allows for firms and households to
explore a more diverse market giving room for innovation.
Further, empirical evidence supports the need for product
space diversification and shows product space complexity
correlated to macro-economic performance measures [1], [2].
We argue that a binary product space constantly allows for
near perfect macro-economic value; whereas in a diverse
product space agents must ”explore” the market and ”exploit”
sustainable transformation networks in order to survive. This
imperfectness of agent performance allows the modeler per-
form policy experimentation such as entrepreneurial support
policies, which would not be viable on a fixed population-
restricted product space ACE model.

In this paper we suggest that a restrictive product space will
cause a lack of evolutionary dynamics and inhibit innovation.
To demonstrate our hypothesis, we use an agent-based model
of innovation ecosystems, Econosim [7], [8]. In our previous
work, EconoSim was used to compare the effects of different
entrepreneurial support techniques on the survival of innova-
tive agents within an incubated environment [7], [8]. Agents
in EconoSim are binary product transformers; they purchase
one product type from agents selling that product in the
environment, convert it into a second product type according to
a transformation rule and offer to sell the transformed product
to other agents. EconoSim uses a three-tier architecture as
shown in figure 1 to simulate economic transactions. The foun-
dation of this model defines the basic socio-economic building
blocks that define the agent-to-agent micro-interactions. The
second layer defines an innovation ecosystem that incorporates
ecological concepts such as selection, trade networks and
most importantly innovation of transformation rules. These
processes create Darwinian evolutionary dynamics of new
product transformation rules within the population of agents,
allowing for complexification of the product space. The third
tier defines policy interventions such as business incubation,
taxation and environment sustainability experiments conducted



Fig. 1: Conceptual representation for the role of the innovation
ecosystem in ABM.

using the ACE model.

We perform experiments on, first, a restrictive binary prod-
uct space, and second, a diverse product space. In the bi-
nary case, agents do not have to explore for viable trade
partners, instead, trade partner relationships are established
immediately. Therefore, macroeconomic performance is solely
determined by the trade volume among agents. In the diverse
product space, agents have to explore the landscape of prod-
ucts to identify viable trade partners. Therefore, trade partner
discover-ability plays a greater role in macroeconomic perfor-
mance and certain transformer types become more prominent
in the population than others.

To further our point, we perform basic entrepreneurial sup-
port experiments on both the binary product space and diverse
product space. These experiments showed to have little effect
on the binary product space case. However, a considerable
improvement in macroeconomic performance was observed in
the diverse product space case.

We performed on a prominent ACE model in the literature,
JAMEL [9] which uses the classical representative agent style
model of economy. JAMEL associates Keynesian thinking
with agent-based approach to investigate economic phenom-
ena. The version of JAMEL used in our experiments consist
of households, firms and banks. Households provide labor to
firms which sell a single consumer product. The product space
therefore, essentially consists of two possible products: labor
and consumer good. Our entrepreneurial support experiments
failed to have any sustained effect on the macroeconomic
performance of JAMEL, which leads us to the conclusion that
product space diversity is needed to model innovation.

It is important to note that this study does not perform a
critical comparison between JAMEL and EconoSim. Instead,
it highlights the importance of evolutionary dynamics in
agent-based computation economics models for certain policy
experiments (business incubation in this case). We argue that
despite the underlying economic principles of most successful
agent-based models, without evolutionary dynamics and the
described heterogeneity, they are unsuitable to simulate the
effects of certain economic phenomena such as entrepreneurial
support, in contrast to EconoSim.

II. RELATED WORK

Economic phenomena have been modeled using neoclas-
sical approaches [10]; evolutionary approaches [11]; econo-
metrics [12] and computational agent-based approaches [13].
These approaches differ in their represenation of economic
behaviors and structure. Agent-based approaches offer flexi-
bility and they are the natural fit for the stochastic and non-
linear nature of innovation ecosystems [14], [15]. Agent-based
modeling also allows the representation of knowledge in ways
that are mathematically intractable.

One of the earliest attempts at agent-based modeling of
socio-economic ecosystems is the Sugarscape model [16].
Since then, various models have been developed throughout
the last decade encompassing different aspects of economics.
The sophistication of ACE models have increased rapidly
in the past few years and the capabilities of the models
have expanded for economics [17]. ACE models have proven
to be a powerful tool for policy experimentation by being
able to embody the heterogeneity of innovative strategies in
production [18] and trading strategies [19].

A notable trend in the ACE literature is towards repre-
sentative agents that model typical classes economic entities
such as firms, households or banks. In addition to an increase
in the number of agent types being represented, represen-
tative markets have also been modeled [4] by using agent-
based approaches. Diversification of firm types has also been
experimented with by modeling consumer-goods producing
firms and capital-goods(machinary/tools) producing firms[20].
One of the highly representative ACE models in the current
literature is EURACE [21], [22]. This model has taken on the
most ambitious feat of making a one-to-one mapping of the
European economy. Darabi et al. [23] modeled the enterprises
by agent-based modeling to analyze different modes of gov-
ernance. Dougherty et al. [24] presented a multi-scale data
analytics approach for modeling the U.S. healthcare system
and explores agent-based methods to portray the movement
of patients in the state-space in the context of the overall
economy. Laarabi et al. [25] used an agent-based approach
to introduce an architecture for a visual Dangerous Goods
Transport (DGT) simulation system. Scott et al. [26] presented
a framework to model public facing government services as a
business ecosystem perspective.

A common property in the traditional computational eco-
nomics models is the lack of innovation or diversity in the
product space and production process. However, innovation
and technology diffusion are critical components of economic
growth [27], [10]. To take these components into account,
EconoSim uses an agent-based approach, which models the
economy as an ecosystem. The agents in the model are
treated as components in an ecological network [28] and this
network summarizes the technological structure, production
and innovation capabilities within the economy. JAMEL is
a macroeconomic laboratory, which is used to conduct ex-
periments on economic phenomena such as the flexibility
of wages and instability with endogenous money [5] and



inflation targeting [29]. JAMEL is used in this paper along with
EconoSim to demonstrate the effects evolutionary dynamics in
agent-based models of ecosystems.

III. A COMPARISON OF PRODUCT SPACES

In this section we observe how product space diversity
effects macro-economic performance. The product space, as
defined by [1], [2] is the network of product types linked by
their proximity measurements. Greater proximity represents an
easier transformation between the products. In EconoSim, the
relative popularity of a transformation rule would represent
how often one product type is converted to another, which
is analogous to proximity in the product space. We perform
experiments on two cases of EconoSim: 1) using a binary
product space and 2) using a diverse product space of 32
products (16 times larger).

A. EconoSim

EconoSim is a model of innovation ecosystems, built to test
policy experiments such as incubation. EconoSim consists of
a single agent type called an adaptive resource transformer
(ART), which embodies a single transformation rule. However,
there are various product and resource types within EconoSim
and ARTs can embody different transformation rules that con-
vert a resource into a product type, creating a heterogeneous
population of agents. During its lifetime, an ART attempts to
find trade partners, product type of which is its resource type,
and purchases required resources for money. The selling price
is adjusted at the microlevel according to the demand for the
ART’s product. ARTs demonstrating high fitness are selected
to reproduce new agents which have mutated transformation
rules, simulating innovation. ARTs may die upon low fitness.
Therefore, the population of ARTs is constantly subjected
to evolutionary dynamics and agents’ survival depends on
whether or not they form a trade network with other ARTs
in the population.

B. Case 1: Binary Product Space

In the first case we use a binary product space. In other
words all agents either convert product type 1 to product type
2 or vice versa. Therefore, the product space consists of 2
nodes with a maximum of 2 possible links and a minimum
of 1. The minimum cannot be zero as we assume that agents
must conduct some form of transformation. This implies that
innovation is limited from a degree of 1 to 2 transformation
types.

C. Case 2: Diverse Product Space

In the second case, we use EconoSim with a less restrictive
product space of a maximum of 32 products. This space allows
for 992 types of product transformations and therefore, more
room for innovation. Figure 2 demonstrates how having a
larger number of products allows for new transformations to
emerge, representing innovation within the existing transfor-
mation network.

(a) Restrictive binary product
spaces have no room for inno-
vation.

(b) Diverse product spaces allow
for emergence of innovative re-
source/product transformations.

Fig. 2: Comparison of the innovative capacity of a restrictive
binary product space and a diverse product space.

D. Simulation Results

We initialize a population of 100 adaptive resource trans-
formers. As EconoSim allows for agents to reproduce, the pop-
ulation grows during initialization of the simulation. Agents
with better performance (collected money and resources) are
allowed to reproduce. A population cap of 3000 agents is used
to prevent infinite population growth to occur and represents
population control due to restricted resources in the real world.
15 runs of each of the two cases above are simulated.

As a macroeconomic measure of performance, the gross
domestic product of the runs are measured and aggregate. In
this study, we define the gross domestic product, GDP, as equal
to the total value of product traded between the ARTs in a
given time step. GDP was calculated for both product spaces
and aggregate over 15 runs.

As seen in figure 3a, the GDP tended to remain close to
3000 for the binary product case. The population of agents
in the binary case also remained close to the maximum
possible population 3000. This implies that every agent in
the population performed a purchasing transaction, however,
was unable to continue with consecutive sales, to raise the
demand and hence the selling price of the products being
bought. This reasoning is further supported by figure 4a, where
the popularity of both transformation types show to remain
slightly less than 1500 agents.

Observing the network structure shown in 3a, it is clear that
no new transformations can be made within this transformation
network due to the restricted product space, indicating that
economic performance cannot be improved through innova-
tion. Instead, the only option to GDP improvement would be
by creating new agents that use the same two transformation
rules (which is restricted to 3000 agents).

In the diverse product space, the GDP remains at a lower
median throughout the simulation, yet maintains a high vari-
ability. The diverse product space even allows some simulation
rules to achieve GDP values beyond that typically found in the
binary product space. Yet, due to the wider variety of trade
partners to choose from, the chance that a viable trade partner
is encountered is reduced. In other words, there is a constant
”room for improvement.” Further, the transformation network
is in a state of constant reorganization as new transformation
rules emerge and new trade partner relations are established.
This dynamic behavior is further demonstrated in figure 4b,



(a) Transformation network structures and aggregated GDP for the binary
product space.

(b) Transformation network structures and aggregated GDP for the diverse
product space.

Fig. 3: Transformation network structures at step 800, 1100,
and 1800 respectively, and GDP aggregated over 15 runs of
EconoSim on different product spaces.

(a) Number of active agents using either transformation rule over time for
the binary product space.

(b) Number of active agents using a particular transformation rule over time
for the diverse product space.

Fig. 4: Popularity of each transformation rule over time
for both product spaces. Each colored line represents the
popularity of a single transformation rule over time.

where the most popular transformation rules are constantly
falling out of dominance, to be replaced by new emerging
transformations. This is comparable to innovation cycles and
domain shifts in the real world.

IV. POLICY EXPERIMENTATION DEMANDS
EVOLUTIONARY DYNAMICS

Policy experiments such as entrepreneurial support poli-
cies aim to improve the performance of the population of
economic agents in a system. In this section, we show how
policy experimentation, entrepreneurial support in particular,
requires evolutionary dynamics to be simulated, for which a
diverse product space is required. We perform entrepreneurial
support experiments on the binary product space case and the
diverse product space case of EconoSim. Our results support
that having a diverse product space allows us to perform
entrepreneurial support experiments on ACE models.



A. Entrepreneurial Support on Binary Product Spaces

Entrepreneurial support was performed on both the binary
product space and the diverse product space. GDP, active
transformation rule distribution, and network structures were
compared for both cases. Entrepreneurial support was per-
formed with the aim of imitating the entrepreneurial support of
new entrant ARTs with external resources and money. In our
previous work [8] we found that providing a resource to money
ratio of 80:20 to the ARTs selected for entrepreneurial support
proved to be a desirable method of entrepreneurial support,
which we have employed in these experiments as well.

Figure 5 compares the change in GDP due to entrepreneurial
support for both cases. It’s clear that when the product space
is diverse, there is a much larger effect on GDP than when a
restrictive product space is used. Comparing the transforma-
tion networks for both cases, it is apparent that for the diverse
product space, entrepreneurial support triggered the agents to
self-organize themselves into a much more highly connected
network of product transformation following entrepreneurial
support. In other words, they were able to use the energy
provided during incubation to form more trade relationships
with emerging products.

Figure 6 describes how the popularity of transformation
rules themselves were effected due to entrepreneurial support
in both product spaces. In the binary product space, the abun-
dance of both transformation rules increased due to incubation,
until the sum was equal to the population limit of 3000. After
this point, no further improvements to the macroeconomy
could be made. In contrast, in the diverse product space,
entrepreneurial support caused multiple transformation rules to
emerge and dominate over previously dominant transformation
rules, representing a period of high innovation. Furthermore,
it was observed that 100 steps of incubation triggered around
500 steps of dominance of the new innovative product trans-
formations.

Futhermore, we see that the aggregate improvement in
GDP due to incubation, 1000 time steps after incubation
has stopped, shows a behavior as shown in figure 7. Since
incubation is performed for 100 time steps, 300 agents are
incubated and 200 units worth of resources and money are
provided a total of 6000000 currency units are provided during
incubation. According to 7, for the case of 32 products, at time
step 2000, there is a considerable risk of loss (p = 0.7291)
due to entrepreneurial support (mean improvement due to
incubation at step 2000 is 3692946 units).

V. AN EXAMPLE FROM THE LITERATURE

In addition to experimenting in EconoSim, we replicated
our results on an agent-based economics model from the
literature, JAMEL [9], [5]. The version of JAMEL we used
employed the classical representative agent modeling approach
with households, firms and a bank and used a binary product
space of labor and consumer good. Our results show that
JAMEL, under a binary product space, will not allow for
innovation and shows no sustained macroeconomic changes
caused by entrepreneurial support.

(a) Transformation network structures and aggregated change in GDP
caused by entrepreneurial support for the binary product space.

(b) Transformation network structures and aggregated change in GDP
caused by entrepreneurial support for the diverse product space.

Fig. 5: Evolution of transformation network structures at
step 800, 1100, and 1800 respectively, and the aggregated
difference in GDP between the incubated and non-incubated
runs on EconoSim.



(a) Number of active agents using either transformation rule over time for
the binary product space.

(b) Number of active agents using a particular transformation rule over time
for the diverse product space.

Fig. 6: Popularity of each transformation rule over time
for both product spaces. Each colored line represents the
popularity of a single transformation rule over time.

A. JAMEL

JAMEL employs a representative agent approach for eco-
nomic modeling and has three main types for agents: Firms,
Households and Banks. In addition, JAMEL uses sectors as
collections to contain and process the functions of similar
agent groups. For example, a household sector, a banking
sector and an industrial sector, holding households, banks and
firms, respectively. In addition, there would be a capitalist
sector of households, which shows the intent of investment in
industry. The same household agents can be in both capitalist
and household sectors depending on their purposes.

B. JAMEL with Entrepreneurial Support

Entrepreneurial support in JAMEL was performed using a
closed system approach using the agent structure of JAMEL
to recycle resources to new firms, as well as using an open
system approach, where resources and money were injected
into the system externally (as done in EconoSim).

Fig. 7: Aggregate change in GDP due to incubation, accumu-
lated over 1000 steps after entrepreneurial support has been
withdrawn for the diverse product case in EconoSim.

We modeled the closed system entrepreneurial support
without modifying the JAMEL’s main system characteristics.
The entrepreneurial support technique represented resource
provision through an external incubator source. Thus, en-
trepreneurial support involved the injection of energy as direct,
external deposits into the incubated firms’ bank accounts
during the support period. Neither money or labor was being
drawn from any internal source. The incubated firms were
provided 20% of its worth over the incubation phase.

Entrepreneurial support experiments were performed on
JAMEL while gross profit distributions and net value of
production were measured. The scenario for each case was
initialized with 2000 Households and 95 firms. At period 200,
five new firms were introduced into the population and the
simulations were ended at period 600. Each experiment was
repeated over ten runs. The economic parameters as provided
by the baseline experiment definition of JAMEL were used
throughout the simulations.

The previous work on EconoSim has identified that selection
of the youngest agents from the population proved to result
in the highest systemic growth. Therefore, the youngest firms
were selected for entrepreneurial support and incubator size
was five, effectively selecting the five new firms introduced to
the system at step 200. Entrepreneurial support was initiated
at time step 200 and continued for 100 time steps. 2% of
each firm’s gross profit was collected as tax at each time step
during the incubation phase and the tax was used to fund the
incubatees.

Fig. 8 compares the distribution of gross profit of all firms
over time without entrepreneurial support (Fig. 8a) against
with entrepreneurial support (Fig. 8b). The results show that
there is no significant difference between either case. In other
words, entrepreneurial support had no effect on the gross profit
distribution of JAMEL over time.

The second experiment involved JAMEL being incubated
using an open system approach. Entrepreneurial support was
performed as the injection of funds through external deposits



(a) (b)

Fig. 8: Gross profit distribution over time (a)without entrepreneurial support and (b)with entrepreneurial support through
redirection of internal funds on JAMEL.

(a) (b)

Fig. 9: Gross profit distribution over time (a)without entrepreneurial support and (b)with entrepreneurial support through external
funds on JAMEL.

directly into the incubated firms. In this case the energy was
not being drawn from an internal source unlike in the tax-fund
entrepreneurial support experiment. The incubated firms were
given 20% of its worth during the incubation phase to match
the assistance gained by an incubated firm in the previous
experiment. Simulations were repeated using selection of
youngest and worst performing agents for incubation.

Comparison of gross profit without entrepreneurial support
(Fig. 9a) and with entrepreneurial support (Fig. 9b) for the
open system approach showed a marked improvement in
gross profit during the incubation phase (considering only five
of the 100 firms were incubated). Yet, as soon as support
was withdrawn, the gross profit returned to the state it was
expected to reside in without incubation at the same rate it had
increased. In other words, the system was unable to emerge in-
novative firms, which could have thrived on the external funds

provided by reorganizing the internal transformation networks
to maintain a state of higher economic value. This can be
attributed to the lack of heterogeneity in the resource space
and the absence of evolutionary dynamics within JAMEL.

VI. CONCLUSION

In this paper, we emphasize the importance of evolutionary
dynamics within agent-based systems of computational eco-
nomics by demonstrating the importance of modeling larger
and diverse product spaces. A common setback of many mod-
els in the literature is the absence of an underlying evolutionary
mechanism for agents. We discuss that an economy can be
modeled as an ecosystem and evolutionary dynamics form a
critical component of these ecosystems.

To demonstrate our argument, we simulated two product
space cases on EconoSim, a model of innovation ecosystems



[7], [8], where each agent represents an Adaptive Resources
Transformer (ART). An ART buys products from other ARTs,
converts it into another type of product according to its
transformation rule, and sells it to other ARTs at a rate adjusted
by its demand. In the first case, the product space was limited
to 2 products creating a binary product space, with 2 maximum
possible transformation types. For the second case, the product
space was increased to 32 products, allowing for 992 possible
transformation types; a much larger space for innovation.

Our results show that in the binary case, agents easily
acheive the best possible transformation network configura-
tion, which is to have near equal numbers of ARTs using both
transformation types. Therefore, when we attempt to perform
a policy experiment in the form of entrepreneurial support we
see no change in macro-economic measure.

In contrast, having a diverse product space forced ARTs to
discover viable trade partners, while ARTs with new transfor-
mation rules emerged in the population. In order to survive, an
ART had to discover a viable trade partner before it expended
its resources. Therefore, the macro-economic measures were
generally less than in the binary product space. However, upon
receiving entrepreneurial support, the diverse product space
showed a great improvement in the macro-economy. The addi-
tional energy provided through entrepreneurial support, helped
the ARTs survive long enough to discover their fit within
the transformation network. This was seen with the marked
increase in the complexity of the transformation network
during and right after the incubation period. Furthermore, our
experiments showed that in the diverse product space, we had
an opportunity to improve the macro-economic value over time
by an amount greater than that spent during entrepreneurial
support.

It was seen, however, that even in the diverse product space,
the transformation network eventually returned to its low com-
plexity state. We attribute this to the lack of loyalty between
trade partners; although entrepreneurial support allowed for
the formation of a stronger network, when an ART within this
structure would identify another viable trade partner offering
a lower buying price, it would break its stable trade partner
relationship and move to the new ART. However, this new
relationship is not always as supported by the rest of the
population as the previous one. This disloyalty among trade
partners resulted in the gradual breakdown of the improved
transformation network structure.

Repeating these experiments on another ACE model,
JAMEL [9], lead us to further support our theory. JAMEL
uses a representative agent modeling technique with a binary
product space (labor and generic consumer goods). We per-
formed two types of entrepreneurial support on JAMEL, 1)
recycling taxed resources into new firms, 2) injecting external
energy into incubated firms. In the first case, no change
in the macro-economy was observed due to entrepreneurial
support. In the second case, the macro-economic measure used
(gross profit), showed a momentary improvement with en-
trepreneurial support but immediately returned to the original
state when support was terminated. In other words, the lack

of space for innovation left the system with no ability to learn
a better structure which could harness the provided energy to
greater effect.

In conclusion, we have demonstrated the importance of
embodying a diverse product space in ACE models, in order
to allow for innovation. Including product space diversity in
ACE will allow modelers to study innovation in relation to
macro-economic growth and perform innovation-driven policy
experimentation as we have, in regards to entrepreneurial
support. This work also sheds light on the need to identify and
improve the fidelity of modeling loyalty or stickiness of the
agents, to calibrate the sustainability of stronger transformation
network structures discovered during the evolutionary process.
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