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Abstract. We propose a novel optimization algorithm particularly suited for 

solving combinatorial non-polynomial problems. The algorithm is inspired by 

human groups and imitates the way they collectively solve complex problems 

driven by self-interest and consensus seeking. The HGO describes the statistical 

evolution of the individual choices within the framework of continuous-time 

Markov processes. The dynamics of such a system is characterized by a phase 

transition, from low to high values of the consensus. We recognize this phase 

transition as being associated with the emergence of a collective superior intelli-

gence of the group. We compare the proposed algorithm with other optimization 

methods, and, in particular, with the simulated annealing (SA), the multi-agent 

simulated annealing (MASA) and the genetic algorithm (GA). The efficacy of 

these methods in solving combinatorial problem defined by NK Kauffmann ob-

jective function is studied. We show that the HGO method very significantly out-

performs the other methods notably in presence of limited knowledge of the 

agents.  

Keywords: optimization algorithm; swarm intelligence; artificial Intelligence, 

decision-making, social interactions, complexity, Markov chains 

1 Introduction 

Solving operational optimization problems often requires the use of heuristic optimiza-

tion techniques, such as genetic algorithms, simulating annealing, tabu search, to name 

a few. Recently, a particular class of optimization algorithms, inspired by the complex 

behavior of natural systems, has become very popular (Conradt and Roper 2003, Bram-

billa et al. 2013). These algorithms belong to the class of swarm intelligence methods 

and exploit the potential of the collective decision making (Cheng et al. 2015) in solving 

complex problems. Animals in groups, e.g. flocks of birds, ant colonies, and schools of 

fish, exhibit collective intelligence when performing different tasks as, for example, 

which direction to travel in, foraging, and defense from predators (Conradt and Roper 
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2003, Couzin et al. 2005). Artificial systems such as groups of robots behaving in a 

self-organized manner show superior performance in solving their tasks, when they 

adopt algorithms inspired by the animal behaviors in groups (Krieger et al. 2000, Ru-

benstein et al. 2014, Werfel et al. 2014). Human groups, such as organizational teams, 

outperform single individuals in a variety of tasks, including problem solving, innova-

tive projects, and production issues (Lee and Lucas 2014, Brummitt et al. 2015, 

Clément et al. 2013). 

The superior ability of groups in solving tasks originates from collective decision-

making: agents make choices, pursuing their individual goals by relying on their own 

level of knowledge and amount of information, and adapting their behavior to the ac-

tions of the other agents. Despite single agents may possess limited knowledge, the 

collective behavior, enabled by the social interactions, leads to the emergence of a su-

perior intelligence of the group (Bonabeau et al. 2000, Vanni, Luković and Grigolini 

2011, Easley and Kleinberg 2010). 

Moving from a recent model of human decision-making, recently presented by Car-

bone and Giannoccaro (2015), we propose a swarm-intelligence-optimization-algo-

rithm, referred to as the Human Group Optimization (HGO) algorithm, to deal with 

complex combinatorial problems. The algorithm captures the two drivers of the indi-

vidual behaviors in groups, i.e., the self-interest and the consensus seeking. In making 

decisions each individual attempts to increase the perceived fitness, which is an esti-

mation of the real fitness value based on individual’s knowledge, (Turalska and West 

2014, Conradt and Roper 2003) and strengthen the agreement with the individuals (Di-

Maggio and Powell 1983), whom he/she interacts with through social relationships. 

A continuous-time Markov chain is proposed to describe the time evolution of the 

decision-making process. As in more standard optimization techniques (e.g., simulated 

annealing) the parameters of the model are continuously tuned, during the optimization 

process, in order to guarantee the convergence towards the global optimum on the fit-

ness landscape. The latter is built within the framework of the NK model (Kauffman 

and Levin 1987, Kauffman and Weinberger 1989). We define the transition rate of each 

individual's opinion change as the product of the Ising-Glauber rate (Glauber 1963), 

which implements the consensus seeking (Ising 1925, Weidlich 1971), and the expo-

nential rate proposed by  Weidlich (1991), which models the self-directed behavior of 

the individual. We compare our result with those of other optimization techniques in 

terms of efficacy in solving the NP complete problem defined on the NK Kaufmann 

landscape, for K > 2. 

The paper is organized as follows. First, we present the HGO optimization algorithm. 

We then illustrate the simulation analysis and compare the performance of the algo-

rithm proposed with that of the SA, MASA, and GA. We end with some discussions 

and conclusions. 



2 The optimization algorithm mimicking the decision making 

process of human groups 

We consider a human group made of M socially interacting members, which has to 

solve a complex combinatorial problem that consists in identifying the set of decisions 

(choice configuration) with the highest fitness. The fitness function constructed by em-

ploying the NK model (Kauffman and Levin 1987, Kauffman and Weinberger 1989). 

A N-dimensional vector space of decisions is considered, where each choice configu-

ration is represented by a vector d =  
N

ddd ,...,,
21

. Each decision is a binary variable 

taking only two values +1 or –1, i.e. 1
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d  Ni ,...,2,1 . The total number of decision 
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The integer index 1,...,2,1,0  NK  represents the number of interacting decision 

variables, and tunes the complexity of the problem. The complexity of the problem 

increases with K. Note that, for K ≥ 2 , in computational complexity theory, finding the 

optimum of the fitness function  dV  is classified as a NP-complete decision problem 

(Weinberger 1996). This makes this approach particularly suited in our case. 

We model the level of knowledge of the k-th member of the group ( Mk ,...2,1 ) by 

defining the competence matrix D, whose elements 
kj

D  take the value 1
kj

D  if the 

member k knows that the decision j  contributes to the total fitness V, otherwise 0
kj

D

. Based on the level of knowledge each member k computes his/her own perceived 

fitness (self-interest) as follows: 
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Note that if 01   kj
N
j D  the perceived fitness is set to zero. Each member of the 

group makes his/her choices driven by the self-directed behavior, which pushes him/her 

to increase the self-interest, and by social interactions, which push the member to seek 

consensus within the group. When 0
kj

D  for Nj ,...2,1 , the k-th member pos-

sesses no knowledge about the fitness function, and his choices are driven only by con-

sensus seeking. Note that the configuration that optimizes the perceived fitness Eq. (2), 

does not necessarily optimize the group fitness Eq. (1). This makes the mechanism of 



social interactions, by means of which knowledge is transferred, crucial for achieving 

high-performing decision-making process.  

We build the matrix D, by randomly choosing 1kjD  with probability  1,0p , 

and 0
kj

D  with probability p1  . By increasing p from 0 to 1 we control the level 

of knowledge of the members, which affects the ability of the group in maximizing the 

fitness function Eq. (1). All members of the group make choices on each of the N deci-

sion variables jd . Therefore, the state of the k-th member ( Mk ,..,2,1 ) is identified 

by the N-dimensional vector  N
kkkk  ,..., 21  , where 1

j
k  is a binary varia-

ble representing the opinion of the k-th member on the j-th decision. For any given 

decision variable jd , the individuals k and h agree if 
j

h
j

k   otherwise they disagree. 

Within the framework of Ising's approach (Ising 1925), disagreement is characterized 

by a certain level of conflict 
j

khE  (energy level) between the two socially interacting 

members k and h , i.e. 
j

h
j

k
j

kh JE   , where J is the strength of the social interaction. 

Therefore, the total level of conflict on the entire set of decisions is given by: 
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where the sum on the indexes k and h is over pairs of adjacent spins (every pair is 

counted once) and the symbol (·) indicates that k and h are nearest neighbors. 

A multiplex network (De Domenico et al. 2013) with j = 1,2,.., N different layers is 

defined. On each layer, individuals share their opinions on a certain decision variable 

jd  leading to a certain level of conflict. The graph of social network on the layer jd  

is described by the symmetric adjacency matrix 
j

A  with elements j

kh
A . The intercon-

nections between different layers represent the interactions among the opinions of the 

same individual k on the decision variables. 
In order to model the dynamics of decision-making in terms of a continuous-time 

Markov process we define the state vector s of the entire group 

s =  N
MMM

NN  ,...,,...,,...,,,..., 21
2

2
2

1
21

2
1

1
1  of size n NM   and the block diag-

onal adjacency matrix  Ndiag AAAA ,...,, 21 . Now let be  tP ,s  the probability that, 

at time t, the state vector takes the value s out of 2n possible states. The time evolution 

of the probability  tP ,s obeys the master equation 

 

         t'P'wtP'w
dt

tdP
lll

l
lll

l

,,
,

ssssss
s

   (4) 

with  
nll
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s . The transition rate  ll 'w ss   is the 

probability per unit time that the opinion sl flips to  sl while the others remain tempo-
rarily fixed. Recalling that flipping of opinions is governed by social interactions and 
self-directed behavior, a possible ansatz for the transition rates is 
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In Eq. (5) M is the number of agents, J is the strength of social interaction. The pay-off 

function      llll V'V'V ssss  ,  , where    kkl VV s , is simply the change of 

the fitness perceived by the agent k, when its opinion 
j

kls   on the decision j changes 

from j
kls   to 

j
kls'   . The transition rates  ll 'w ss   have been chosen to be 

the product of the transition rate of the Ising-Glauber dynamics (Glauber 1963), and the 

Weidlich exponential rate    
kk

'V ss ,exp   (Weidlich 1991). The quantity β is the 

inverse of the so-called social temperature and is a measure of the chaotic circumstances 

which lead to a random opinion change. The term β’ is related to the degree of uncer-

tainty associated with the information about the perceived fitness (the higher β’ the less 

the uncertainty). 

To solve the Markov process Eqs. (4) and (5) we employ a simplified version of the 

exact stochastic simulation algorithm proposed by Gillespie (Gillespie 1976, Gillespie 

1977). The algorithm allows generating a statistically correct trajectory of the stochastic 

process described by Eqs. (4) and (5). 

In Carbone and Giannoccaro (2015), it has been shown that the decision making 

process performs at the best when consensus about the members sets in, i.e. at the crit-

ical value of βJ, which makes the system undergo a transition from low to high consen-

sus. This transition was identified as being associated with the emergence of a superior 

intelligence of the group, i.e. the so-called swarm intelligence.  

The proposed optimization algorithm exploits this property of the system, by in-

creasing the parameter β during the optimization process, until the threshold value that 

determines the consensus is reached. Then, to make the group converge to the optimal 

point on the fitness landscape (i.e., to the configuration with the highest payoff), the 

parameter β’ is also incremented during the optimization. This requirement is similar 

to the continuous decrease of the temperature in SA, and guarantees that the ratio 

0'/ J  as during the process. In detail we choose 
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where  
thJ  is the threshold value for the collective intelligence to emerge.  

2.1 Performance measurement 

In Carbone and Giannoccaro (2015) two performance measurements of the collective 

decision making process were considered: 1) the group fitness value and 2) the level of 



agreement between the members (i.e. the social consensus). To calculate the group fit-

ness value, the vector d   Nddd ,...,, 21  needs to be determined. To this end, consider 

the set of opinions  j
M

jj  ,...,, 21
 that the members of the group have about the de-

cision j , at time t. The decision 
j

d  is obtained by employing the majority rule  
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If M is even and in the case of a parity condition, 
j

d is, instead, uniformly chosen 

at random between the two possible values ± 1 . The group fitness is, then, calculated 

as   tV d  and the ensemble average (i.e. the mean over multiple simulation runs) 

 tV  is evaluated. The efficacy of the group in optimizing  tV is calculated in 

terms of normalized average fitness       minmaxmin / VVVtVt   where 

  dVV maxmax  and   dVV minmin  .  

The consensus of the members on the decision variable j is measured as 
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Note that      tRtt
j

hk
j

h
j

k   is the correlation function of the opinions of the 

members k and h on the same decision variable j. 

3 Simulation and results 

In this section we first analyse the performance of the HGO algorithm for the case of a 

NK landscape with 12N  and  K ranging from 5 to 11. A much more complex case is 

also analyzed with 18N  and 17K . We also investigate the effect of the size of 

the group on the performance of the HGO, by making M range from 3 to 15. We assume 

that the network of social interaction among the M agents is described by a complete 

graph. Then, we compare HGO with the Simulated Annealing (SA) and with the Multi 

Agent Simulated Annealing (MASA) for 12N  11K , and 18N   17K . The 

comparison is show for increasing levels of knowledge p .  

Each stochastic process is simulated by generating 50 different realizations, and the 

ensemble average of the results is calculated. The simulation is stopped at steady-state, 

i.e., when changes in the time-averages of consensus and pay-off over consecutive time 

intervals of a given length is sufficiently small. 

In Fig. 1 the time-evolution (i is the time iterator) of the HGO performance are reported 

for 12N , 11,9,5K , and different levels of knowledge p ranging from 0.1 to 1. We 

observe that not depending on the complexity level K and on the level of knowledge p, 

the increase of  t  is always accompanied by simultaneously increase of  t . 



 

Fig. 1. The time-evolution of the normalized average group fitness and consensus for p = 0.1, 

0.3, 0.5, 0.8, 1.0, N = 12 and K = 5, 9, 11. 

This confirms that the transition from low- to high- level of agreement identifies the 

emergence of the collective intelligence of the group. Therefore, the occurrence of this 

transition is a necessary to achieve high performance of the HGO algorithm. Note that 

the complexity parameter K only marginally affects the performance of the method. 

The level of knowledge p of the agents, instead, strongly affects the performance of the 

optimization algorithm, although a high efficacy of the optimization algorithm is al-

ready achieved at moderate levels of knowledge, i.e. already for p = 0.5. This can be 

clearly observed in Fig. 2, where the steady-state values of the efficacy 


  [Fig. 2(a)], 

and consensus 


  [Fig. 2(b)] are plotted as a function of the level of knowledge p, for 

11,9,5K . 

 



 
Fig. 2. The steady-state efficacy 


 , (a); and degree of consensus 


 , (b); as a function of the 

knowledge level p, for N = 12, M = 7, and K = 5, 9, 11. 

 

 

 
Fig. 3. The steady-state efficacy 


 , (a); and degree of consensus 


 , (b); as a function of the 

knowledge level p, for N = 18, K = 17, and M = 3, 7, 11, 15. 

 

Figure 3 shows 


 and 


  as a function of p for different group sizes 15,11,7,3M , 

for 18N and 17K . Note that, for 3.0p , increasing M slightly improves the ef-

ficacy of the optimization method [see Fig. 3(a)]. In all cases the best results are ob-

tained for 5.0p . Hence, 5.0p can be identified as a threshold that must be ex-

ceeded to guarantee a high degree of consensus [see Fig. 3(b)], and, hence, high fitness 

values [see Fig. 3(a)]. 

Fig. 4 compares the HGO with SA and multi-agent simulate annealing (MASA). Re-

sults are shown for 12N , 11K [Fig. 4(a)] and  18N , 17K   [Fig.4(b)], with 

p ranging from 0 to 1. In the case of HGO and MASA, we use 7M . 

The HGO algorithm always outperforms the other methods, notably under the condition 

of limited knowledge of the agents. In this case, the social interaction pushes individu-

als with no knowledge about a certain decision, to make a good choice as they follow 

the decisions of those agents, who know the influence of that decision on the fitness 

value. This type of indirect information sharing is specific of collective intelligence, 

and makes the entire group perform much better than a group of non-interacting mem-

bers. 

 



 
Fig. 4. A comparison between the proposed HGO, SA, and MASA, in terms of 


  as a func-

tion of the knowledge level p, for N = 12, K = 11, (a); and N =  18, K = 17, (b). 

 

 

 HGO SA MASA GA 

N=12, K=1 0.999 0.856 0.996 0.888 

N=12, K=5 0.994 0.967 0.996 0.833 

N=12, K=11 0.993 0.987 0.988 0.798 

 

Table. 1. A comparison between the swarm intelligence algorithm (HGO), the simulated anneal-

ing (SA) and the genetic algorithm (GA)  for, N = 12, K = 1, 5, 11. The number of agents is M = 

7 and the level of knowledge is p = 1. 

 

Table 1 compares the HGO with SA, MASA and GA. Results are presented for N=12 

and K=1, 5, 11. The number of agents (for the HGO, MASA and GA) is M = 7 and the 

level of knowledge is p = 1. We note the in all cases the HGO algorithm always out-

performs the other methods and in particular the Genetic Algorithm. 

4 Conclusions 

A swarm intelligence optimization algorithm (HGO) inspired by the collective decision 

making of human groups is proposed. The algorithm exploits the main drivers that lead 

to the emergence of a collective intelligence in human groups (i.e., the self-interest of 

each individual and the search of consensus with the other members of the group) to 

improve the searching of the optimum on a complex fitness landscape, described by the 

Kauffman’s NK fitness model. Results show that the HGO algorithm outperforms the 

other methods as the simulated annealing (SA), a multiagent version of the SA and the 

genetic algorithm. This is even more relevant in presence of limited knowledge of the 

agents. 
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