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Abstract Homeostasis away from thermal equilibrium is a defining characteristic of life; metabolism
is the physical process by which living systems reject entropy. I argue that a thermodynamic and
information theoretic characterization of metabolic activity is sufficient to generate the principal
features of complex adaptive systems (CAS) observed in the wild, to include ecosystems and social
systems. Starting from first principles and applying a simple constraint of thermodynamic stability
(entropy does not accumulate within the system), I take some initial steps in deriving generative
mechanics for CAS and describe how these mechanics account for the phenomenological properties
of CAS. Growth, diversification, and adaptation result from a minimum set of information-retaining
functions operating in a dynamic environment, and recursion over that set. The complexity observed
in social systems (to include non-human) is an emergent extension of basic metabolic processes at
lower levels of the CAS hierarchy.
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1 Introduction

There is an increasing recognition of the fundamental and central role of thermodynamics
in the behavior of complex systems. Even use of the term “complexity” itself is problem-
atic, except in some relation to thermodynamics, where perhaps its most parsimonious
definition may be found – complex systems are acknowledged to be characterized by
“non-equilibrium” processes, with the equilibrium being referred to as thermodynamic
equilibrium. Complex systems in some sense surprise us, because they are not at thermal
equilibrium with their environment. There is a growing body of work applying thermody-
namic analysis to specific domains; for example, a number of works in the collection [6]
applies the Maximum Entropy Production Principle to a number of physical, chemical,
and earth science complex systems. However, a unified theory of complex systems remains
to be formulated.

When we treat with complex adaptive systems (CAS), the picture gets even messier,
complicated by the diversity of form and process associated with CAS. This rampant
diversity is itself, with accompanying non-linearity, recognized as a defining feature of
CAS, but presents difficulty in formulating a unifying theory of CAS [10]. Notably, Smith
[20],[21],[22] has applied thermodynamic analysis to biological systems, such as the Carnot
cycle and population genetics. Krakauer [12] as well has investigated the information the-
oretic properties of evolution (information being the thermodynamic inverse of entropy),
characterizing natural selection as the Maxwell’s Demon of evolution. Schneider and Kay
[17],[16] argue for a thermodynamic approach to the study of ecosystems, develop a theo-
retical framework for doing so, and provide data and analysis demonstrating that such an
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approach does indeed yield additional insight into the behaviors of ecosystems. However,
these analyses are domain-specific, and descriptive in nature (even if, in most cases, very
mathematical).

In the realm of economics, there is a body academic of complexity-oriented economists,
generally considered on the “fringe”, who advocate for a more robust treatment of thermo-
dynamics in economic theory and analysis: Georgescu-Roegen [15], Foley (and co-author
Smith) [23], Arthur [1], Beinhocker [5], and Ayres ([13],[2],[3],[4], to name a handful). It
is ironic that economics as a science has its genesis in analogy to the first law of ther-
modynamics (conservation of energy – thus “general equilibrium theory”) [5], but that
2nd law thermodynamics (entropy in a system tends to increase) has made little headway
in mainstream economics because the analogy to thermodynamics (specifically, general
equilibrium theory) is considered played out and taken as far as it can go [23].

On the unification front, Holland [10] is perhaps the most widely-recognized as pro-
viding the most complete and general theory of CAS to date. Holland identifies seven
basic characteristics that are common to all CAS – four properties: aggregation, nonlin-
earity, flows, and diversity – and three mechanisms: tags, internal models, and building
blocks. These seven characteristics recur again and again in CAS; in Holland’s opinion,
they are the minimal set for describing CAS (or at least a set to which other theories
reduce to). Holland’s pioneering work provides a framework for identifying, analyzing,
and understanding CAS. Gell-Mann [8],[9] as well provides a broad framework, though it
is more heavily focused on the informational content of CAS ’schemata’ (corresponding
to Holland’s internal models).

What all of these works have in common is that they are primarily phenomenological
characterizations, and usually domain-specific in their analysis (Holland and Gell-Mann
being exceptions to the latter). To be sure, observation and characterization of the reg-
ularities in natural phenomena are the first step in doing real science, as they are a
requisite precursor to formulating valid explanatory models of the phenomena that have
been observed. To date, however, the field of CAS lacks the follow-on explanatory theory
– a universal model that generates (and thus explains) the observed phenomena from
fundamental principles.

For the remainder of this paper, I propose such an explanatory theory. I begin with a
qualitative description of the theory, and follow it with a more formalized model. A brief
sketch of the theory is as follows:

1. The most universal characteristic of life on earth is far-from-equilibrium existence
(Schrodinger [18]); that is to say, organisms avoid the condition of thermal equilibrium.

2. Metabolism is the process by which organisms do so (again, Schrodinger [18]).

3. Metabolism may be modeled as a [composite] function that harvests energy and rans-
forms it into information. Information (negative entropy) compensates for entropy
generated internally and introduced by the environment.

4. Because of entropy, replication is a necessary function for the persistence of informa-
tion.

5. Variation introduced during replication enables adaptation.

6. Entropy is a universal natural selector.

7. Diversity is the accumulation of mutual information in ensembles of CAS.



2 A qualitative description

2.1 The 1st and 2nd Laws of Thermodynamics

The laws of thermodynamics have been termed “the consititution of the universe” – we
have yet to observe any physical process that violates them. They govern the behavior
of all physical systems and processes. This of course includes complex systems, insofar as
they are instantiated in the real world, versus simulated in silico.

The first law of thermodynamics states that the energy flow into a system is exactly
balanced by the work performed by that system and the heat that it outputs (conservation
of energy – it can be neither created nor destroyed). An intuitive interpretation of the
second law is that closed systems – systems that do not exchange heat or matter with the
external environment – tend towards thermodynamic equilibrium; more explicitly, that
the entropy of a closed system always increases: ∆S > 0, with reference to the initial and
final entropy state of a process.

Most will be familiar with the first law; however, familiarity with and understanding
of the second law has been limited by misuse, misapplication, or general misunderstand-
ing of the term entropy itself, and specifically how it relates to physical processes. It is
colloquially understood as “the amount of disorder”, but can be a difficult concept to
grasp, and the easiest approach to an intuitive understanding may – paradoxically – be
through statistical mechanics, rather than the classical thermodynamic approach relating
heat and temperature, as formulated by Clausius. Without recapitulating the statistical
mechanical derivation here, that approach concludes that the entropy of a system is pro-
portional (by Boltzmann’s constant) to the natural logarithm of the number of quantum
states the system may be found in.

It is a measure of disorder of the system, if by “disorder” we mean the difficulty
of identifying or specifying the microscopic state of the system (the quantum states of
all its particles), because of the large number of possible states. Thus, its entropy is a
measure of uncertainty – the amount of information that must be obtained to know its
complete microstate (rather than just its macroscopic properties such as temperature and
volume). If we observe two systems, each with the same schedule of particles (that is,
quantity vs. atomic element), but in the first we observe that some of the particles are
found in crystalline form, we have some sense that there is more order in this system;
conversely, the second has more entropy. We may characterize this difference in entropy
as the additional (missing) information required to specify the states of all particles in the
second system. Equivalently, we conclude that the first system exhibits stored information
telling us something about its micostate: negative entropy, relative to the second. Thus,
there is a direct relationship between the thermodynamic entropy and Shannon’s measure
of information; see Tribus et al. [25] for an exposition on this topic.

In physical terms, a system at thermal equilibrium has reached a uniform temperature
– the average kinetic energy of its particles is the same throughout; entropy is at a max-
imum (for the given temperature), and stored information is at a minimum. Generally
speaking, such a system is inert, and uninteresting – and within the context of living
organisms, certainly dead (though in fact organism death may occur long before thermal
equilibrium – to wit, fossilized remains, which convey information to paleontologists).



2.2 Thermodynamics and Life

In his monograph “What is Life?”, Schrodinger [18] proposes a thermodynamic-based def-
inition of life: life “metabolizes” energy in its environment to maintain homeostasis away
from thermodynamic equilibrium. Schrodinger argues (in Chapter 6) that the primary
function of the metabolic processes of life is to avoid decay towards thermal equilibrium
by incorporating negative entropy from an organism’s environment, and rejecting its own
entropy to the environment. We may say that an organism’s metabolism is an engine: it
consumes energy, turning some of that energy into work, and rejecting the rest as heat.
The work that it does is replacing the entropy that builds up within the organism with
negative entropy (which as we have seen, is information), and moving that entropy into
the environment.

Life is, of course, a paramount example of a complex system (and is in particular a
complex adaptive system). I believe that characterizing the metabolic processes of life in
the language of thermodynamics is not only necessary – since life, as a physical process,
is unequivocally governed by the laws of thermodynamics – but gives us a generic tool to
use in reasoning about the nature of complex systems.

If we accept Schrodinger’s characterization that avoidance of decay into thermal equi-
librium is the prime function of life’s metabolic processes, we may now point to entropy
as the most generic “natural selection” force in the universe: the structures and processes
that persist are precisely (by definition now) those that maintain negative entropy within
to counterbalance – or even exceed – the constant onslaught of entropy. This further leads
us to two insights: 1) we may now propose a formal definition of complex systems based
on thermodynamics, and 2) we may expand our understanding of the term “metabolism”
beyond the wetware-based biochemical processes that happen within the cell wall or in
the intercellular network within an individual organism.

So the mere existence of a non-equilibrium system requires the following conditions:

1. The system is “open” – it is allowed (and must be able) to exchange energy and matter
with its environment.

2.
dSinternal

dt
≤ 0. That is, entropy generation within the boundary is either steady-state,

or decreasing. This is stated in differential form, versus difference form (∆S), in explicit
recognition of a continuous process (rather than a process with well-defined initial and
final states).

3. Texternal < Tinternal. This is merely Carnot’s stipulation that there must be a cooler
temperature reservoir to dump heat (reject entropy) into, if work is to be accomplished.

The first condition is necessary because the 2nd law holds for closed systems, without
caveat; only an open system allows condition 2, which is merely a restatement that com-
plex systems are characterized by a persistence of negative entropy. The first condition
allows a temperature gradient across which work may be performed, and the third con-
dition establishes the direction of that gradient. Condition 2 is in direct contravention to
the 2nd law – the apparent paradox of which was a subject of great debate subsequent to
Clausius’ formulation, and which Schrodinger devoted Chapters 6 and 7 in an attempt to
resolve. The resolution of the paradox is quite simple, though, and is contained in condi-
tions 1 and 3, allowing localized deviation from the 2nd law. Furthermore, it is precisely
those instances where we perceive the most apparent contradiction to the 2nd law – the
far-from-equilibrium cases – that we label as having the most complexity.



A direct consequence of these conditions is that there must be net positive entropy flux
across the boundary (integrated over its surface), from the system into its environment.

Note, however, that this does not necessitate that
dSexternal

dt
>
dSinternal

dt
: complex systems

may be nested within one another, and the external system may be rejecting entropy into
yet another cooling reservoir (external system), proceeding so on until eventually the heat
is – one hopes – radiated into space.

I would like to propose a corollary: for complex adaptive systems (CASs, such as life),
dSinternal

dt
< 0 (entropy generation within the system’s boundary is strictly negative);

that is, over time, such systems grow: in order, negative entropy, information – whichever
term of equivalency you choose to characterize the increasing “complexity” of the system.
An interesting feature of CASs is that a fractal organization follows from their adaptive
nature: at the highest level, the earth’s biome is a single CAS; the biome itself is composed
of interacting ecosystems (coupled both physically, at their borders, and indirectly through
the atmosphere), with ecosystems composed of interacting species populations, societies
of individuals, the individuals themselves, etc. Much of the complexity of each of these
sub-CASs exists as mutual information; in other words, the information they contain
is information about the environment they reside in (including interaction with other
CASs). Their adaptive nature means that all of the CASs, at all levels, are in constant
readjustment to one another, constantly competing for the energy required to metabolize
into negative entropy. True stasis – equilibrium, if not even thermal equilibrium – is a
rarity in such an ecosystem, for that quickly leads to thermal equilibrium.

2.3 An expanded scope for “metabolism”

Since Schrodinger did not provide an explicit thermodynamc definition of the term metabo-
lism, I will here summarize his arguments and characterizations into an explicit one: the
metabolic processes of a system are those which capture energy and pre-existing negative
entropy in the system’s environment, using the energy available for work (the exergy, as
established by the temperature gradient and the system’s efficiency) to assimilate or gen-
erate negative entropy, and to reject the system’s [positive] entropy into the environment.
Traditionally, the system under consideration is understood to be, at most, an individ-
ual organism. But need it be restricted to such? The system referred to as an individual
organism is generically a CAS, at a specific level in the entire, complex hierarchy that
makes up the CAS of the earth’s biome. Can we refer generically to the metabolism of a
CAS?

Many organisms exist within the context of a society, and examples of social organisms
abound across the domains of life: bacteria, protozoans (such as some forms of amoeba),
fungi, insects, fish, birds, all sorts of mammals, and of course humans, and even examples
of cross-species and cross-kingdom societies, such as lichen. When we refer to a society of
individuals, much more than a mere grouping is implied: there is also a subcontext of a
set of interactional behaviors between the individuals of that society, typically designated
as cooperative, and unique to that society, which have evolved to help ensure “survival of
the species”.

And what is survival of the species but a persistence of negative entropy, a persistence
of the information bound within its structures – the unbound energy from the sun, turned
into the stored energy of chemical bonds? Metabolism, then, in a more general sense



applied to the level of a society includes the processes used by a society – the entire
set of social behaviors of its individuals – to capture the energy and information in its
environment and use it to maintain, and even grow, its negative entropy.

This persistence of negative entropy is not merely the enhanced reproductive success
of all its members; in many social insects for example, there are only one or a few repro-
ductively active members. The individual members of these societies cannot long survive,
or persist their genetic information, when separated from their society – and specifically,
from the metabolic processes that that society, as a CAS in and of itself, utilizes to per-
sist its negative entropy. Persistence of the individual’s negative entropy is in many cases
subordinated to and dominated by the society’s.

In this context then, metabolism is no longer just an analogy of a society’s processes
to an organism’s internal metabolic processes: there is direct equivalence in a real, ther-
modynamic sense. The society performs energetic transformations of entropy that are
inaccessible to its individual members, in both form and scale; this is the thermodynamic
perspective on the phenomena that complexity theorists often label as “emergence”.

One may expand this discussion to include CASs composed of multiple societies of
different types, cooperating (or competing) with each other, and coevolving, and so on,
all the way up to the earth’s biome itself as a CAS. All the processes of organisms that
we consider “living”, all of their varied levels of sophistication, all of the complexities of
their metabolic processes, their cognitive abilities (where they exist), and their societies
may be understood as a continual battle between continuity of information, and entropic
decay to thermal equilibrium, all of it fueled (ultimately) by the solar flux. At some point
in the distant past some very localized clumping of negative entropy happened to be able
to persist, and eventually (or simultaneously) to grow, and the accumulation of negative
entropy has been the story of life on earth ever since.

3 A formal description of metabolism

3.1 Thermodynamic stability

We may characterize the metabolic feature of life using the language of both thermody-
namics and of information theory, and in fact both characterizations are equivalent. Ther-

modynamically we say that an entity is an open system that maintains
dSinternal

dt
≤ 0,

when its metabolic process is functioning. The “open system” qualification allows local
deviation from the 2nd law.

From an information theory perspective, we characterize the entity as a communication
channel in time; it takes as input its current state σt and outputs its next state σt+δt (σt+,
hereafter). We denote the information carried by the current state as H(σt), and by the
next state H(σt+). The term mutual information I(X,Y) describes the average information
each variable provides about the other; it is the information that is shared by the two
variables. For a noisy channel with noise signal ν, Y = X + ν and I(X, Y ) = H(Y )–H(ν)
[24]. Thus, I(σt, σt+) = H(σt)–H(ν). The noise term ν reflects a change in the state
configuration σ. For real-world systems, the term −H(ν) represents the thermodynamic
entropy generated by the entity itself and incident upon it from the environment – a loss
of information between successive states.

The minimum requirement for avoiding decay to thermal equilibrium is that dS/dt =
0, which is a stasis implying that I(σt, σt+) = H(σt) = H(σt+) (the second relation



due to symmetry of mutual information) – in other words, the system does not lose
information, and the information shared by successive states is maximized. Let us call
this constraint, dS/dt = 0, “thermodynamic stability” - a steady-state in which neither
thermodynamic entropy nor information accumulates. Since we are more interested in
long-term behavior than instantaneous results (or discrete time results over a fixed ∆t),
we may loosen this restriction somewhat by requiring only that the average entropy
accumulation is steady state: dS/dt = 0. Schneider and Kay [17] note that the notion
of stability evaporates in real-world ecosystems, due to their inherent adaptivity and
consequential diversity; however, it is useful as an idealized theoretical constraint to derive
some minimal properties for complex adaptive systems.

Formally, we define the communication channel between states as a transformation,
σt+ = fµ(σt). Note that while I have used functional notation here, fµ is not necessarily a
function in the strict mathematical sense; abstractly, it is a process that moves a system
from state to state, and could as well be described by a state machine. For thermodynamic
stability, we do not require that the states themselves are equal, but that the information
measure is conserved (though if the states are equal, information conservation necessarily
follows). Let us make some observations about fµ.

Observation 1 An entropy-reduction function must exist.

At a minimum, fµ must eliminate the introduction of entropic noise. First, it may
prevent or reduce the introduction of an external noise signal νext. This would come in
the form of a physical boundary that isolates the system from the external environment,
for example the cell wall. Unfortunately, we must acknowledge the dictates of the 2nd
law: if the boundary completely isolates the system, internal entropy will still take its
toll, dS/dt > 0, and the entity decays. However, it may recover the lost information by
rebuilding reject any entropy that is introduced; that is, it may “pump” the noise signal
to its environment (thus, if a boundary exists, it must be at least semi-permeable to
allow outward flux). Third, it may actively correct the informational error term –H(ν)
introduced by the total noise signal. In other words, it rebuilds the information that is
lost due to entropy. Fourth, it may “negate” the noise signal. We shall return later to
these latter two methods.

Observation 2 An energy-collection function must exist.

No matter which method it uses for thermodynamic entropy elimination, fµ does
work, and as a physically realized machine, it must therefore consume energy. Also, as a
physical machine (engine), with efficiency less than 100%, it generates entropy internally.
Therefore fµ performs at least two fundamental operations: 1) it must capture energy from
its environment to activate entropy elimination, and 2) it must eliminate thermodynamic
entropy. In other words fµ is a composite function. Note that the first operation must
harvest energy at a high enough rate to power at least both operations (i.e., including the
harvesting and transport of energy), and the second must reject the entropy generated by
both operations at a high enough rate to prevent its accumulation.

Taken together, these codependent operations make the composite nature of fµ a non-
trivial statement: the minimum possible system to maintain thermodynamic stability is a
two node operator network, whose nodes are mutually dependent on each other to keep the



network coherent. It is a simple economy of thermodynamic commerce: one node collects
energy in exchange for which the other rejects entropy (see Figure 1). But indeed, we might
identify that a simple form of emergence has occurred: a system behavior (dS/dt=0) has
appeared from the mutually dependent interaction of two entities, neither of which can
perform the system function – even scaled down – on its own.

Figure 1: A 2-node network implementing the process fµ maintaining thermodynamic
stability. Stot = −H(ν). fE is the energy-collecting node, consuming EE energy and
generating entropy SE. fS is the entropy-eliminating node, consuming ES energy and
generating entropy SS. Sε represents the entropy flux from the environment, ε.

3.2 Repair Mechanisms

As noted before, the term −H(ν) represents the loss of system information that occurs
during a metabolic transformation fµ between times t and t+∆t. A thermodynamically

stable system maintains dS/dt = 0 by adding H(ν) information back in to the system,
recovering the information that has been lost to entropy – in other words, to repair itself.
In order to do this, all states σ ∈ Σµ (Σµ being the set of all states accessible to each
other via fµ) must contain within their physical instantiation a complete description of
fµ. This description 〈fµ〉 (the angle brackets denote “description of”) must be complete
because the noise signal is not guaranteed to be constant (even if H(ν) is) – things fall
apart. If there were a description, say 〈fµ−〉, that was not sufficient to reconstruct all of
fµ, eventually the part of fµ corresponding to the missing description would degenerate,
and the system fails.

In turn, fµ, and specifically its subcomponent fS (the information-rebuilding function),
must be able to generate all components of fµ from the given description. And so we have
the classic definition of a recursive Turing machine [19] and the self-reproducing feature
so characteristic of life. In the terminology of computational theory, a machine fS is able
to read an input tape (〈fµ〉 ⊂ σ) and construct another machine fµ that can write an
output state σt+ that contains within it 〈fµ〉.

Note also that the 2-node-network of Figure 1 is brittle; in fact, it tolerates no fail-
ure (−H(ν)) whatsoever: the erasure/degeneracy of either of its functions collapses the
system altogether. Since these are physical processes that take time to complete, it must



have multiple copies of fE and fS so that some minimum number remain operable after
introduction of entropy. This is CAS’ implementation of Shannon’s noisy channel theorem.

In any case, thermodynamic stability is achieved when the recursion rate is equal to the
entropy generation rate. In effect, this is the bare minimum of routine maintenance – the
system rebuilds state configuration information at just the right rate to counterbalance
entropy. However, some implicit – and overly restrictive – assumptions were made to hold
dS/dt = 0. For example, the system must be able to diagnose the nature of information
loss, requiring yet another function; additionally, it must be selective in its repair function,
regenerating only those subfunctions that have degenerated. While these functions are
quite commonly found in the more complex varieties of CAS in nature, they are quite
specialized, with a non-trivial amount of rationality to them. It turns out that they are not
necessary for our generative theory, and consequently cannot be expected to be universal.
A much simpler strategy is unrestrained recursion; i.e., growth.

3.3 Growth mechanisms

We have already remarked on the necessity of redundancy if a system is to be fault-
tolerant in the presence of entropy. That redundancy is most easily achieved by simply
eliminating the requirement for selective diagnosis and repair (or selective reproduction
of parts) – having already a mechanism (fS) for repairing entropic damage to the basic
metabolic process fµ, simply churning out entire copies of fµ requires less computational
sophistication (Kolmogorov’s algorithmic complexity [11] – the shortest length algorithmic
description able to compute a given function) and should therefore be favored.

Since we are attempting to outline a fundamental theory of generative mechanisms
for complex behaviors, we need not (should not) assume the a priori existence of more
“complex” behaviors (specifically, more functions) where simpler ones (fewer functions)
will suffice. Applying this version of Occam’s Razor, then, the most general version of
fS is one whose sole function is to generate more copies of fµ, or its components fE
and fS. (Presently, I purposefully neglect discussion of whether fµ is generated as a
singular structural entity or as a network of structurally distinct but cooperating fE and
fS entities,as this would delve too deeply into specific domains.)

We should note, however, that fµ is a physical machine, and the information build-
ing component also requires more matter to completely reconstruct it, whereas a repair
mechanism could operate over the material already present in the degraded fµ. We could
therefore add a third function to our network: a matter harvesting node. I neglect explicit
consideration of this function, because – while a necessary component of growth in natural
systems – it is not critical in constructing the general outline of the theory. So we assume
for the present that the requisite material distribution is sufficient for fS to perform its
task.

Thus, the simplest version of the information building function repeatedly generates
fµ as energy is made available by the energy-harvesting component. And here we see in
this basic formulation that entropy is acting as a natural selection force: in order to make
copies of itself, fµ must operate at a fast enough rate to compensate for H(ν). Presuming
that the average information-generation rate exceeds the average entropy generation rate,
the resulting growth is exponential in time, until the limits of available resources are
reached. In the meantime, energy consumption will be exponential as well. Admittedly,



whole-sale self-reproduction is a brute force strategy to counter entropy, but it is one that
works, so long as the energy resource holds out.

Finally, we note that the presence of growth leads us to a result that the average
entropy generation dS/dt < 0. If the energy consumption of fµ expands to the limit of the

environmental availability, then its dS/dt will fluctuate around the energy rate of change
(zero at steady-state).

3.4 Variation and adaptation

Up to this point, we have not introduced variation, and consequently adaptation. Also, the
fµ metabolic model has been analyzed in the context of an energetically (and materially)
unconstrained environment. From the beginning however, we have characterized fµ as a
noisy communication channel, with input state σt and output state σt+. Formally, our
model thus far:

fµ : Σµ,−H(ν) 7→ Σµ

and
fS : Σµ,−H(ν) 7→ fµ

I.e., the states σ ∈ Σµ could be depicted as a fully-connected directed graph / state
machine with all edges fµ, and as a generator fS that could output fµ from the com-
mon description 〈fµ〉 encoded within each state in Σµ. However, the entropy term was
assumed to provide variation within the joint information H(Σµ) of the state-space; in
other words, one stayed within the fully-connected portion of the graph. Two alternatives
are possible: 1) a degraded transformation fµ

− exits the state-space to a dead-end node
(system collapse), or 2) the information building function is modified to some fS

∗ that
maps to a new state transformation function fµ

∗ : Σµ
∗ 7→ Σµ

∗.
The new function fµ

∗ either provides more entropy-compensation than fµ, or it pro-
vides less: entropy is the universal fitness selector. If the latter, it could be the case that the
new system’s average entropy accumulation rate is now positive, and the system decays
in time. If the former, it will grow at a faster rate than the previous system characterized
by fµ. In that case, it must also follow that energy consumption keeps apace with the
growth rate.

One possibility for variation is a new energy-harvesting function fE
∗ that is able to

exploit a hitherto untapped energy resource; a prime example would be the stored chemical
energy in the structural bonds of some species (biological or chemical) extant in the
environment. Of course, it may well be the case that this species is another CAS, with
metabolic function fµ′, with energy bound as information in its state σ′. Thus, one entity’s
entropy is another’s information. Regardless, we may characterize this exploitation as
mutual information that the entity’s component function fE

∗ has with respect to its
environment: Imutual(〈fE∗〉, ε). Likewise, we may characterize an entity’s survival strategies
against exploitation by environmental threats as Imutual(〈fS∗〉, ε).

Since we placed no constraints on the form of fµ
∗, we have allowed the possibilities that

fE
∗ is itself a composite of one or more predecessor functions fE

i and likewise for fS
∗ – in

other words, the building block modularity so commonly found in CAS [10]. Recognizing
that within each one of these distinct fE

i and fS
i is potentially unique mutual information

about the environment, we conclude that variations of fµ
∗’s may successively build mutual

information about the environment. That is to say, they have diversified.



And so with these generic mechanisms we have a recipe for multiple CAS fµ
i competing

with and adapting to each other ad infinitum in an environmental ensemble, with the
potential to create all of the bewildering diversity of CAS observed on earth.

3.5 Metabolic Societies

There is another method by which we may achieve composite functionality: two entities
fµ

1 and fµ
2 may cooperate. Refer to Figure 2. Here the two entities mutually benefit each

other with the sharing of energy resources and information accumulation. What is of note
in this relationship, versus a simple accumulation of entities, is that each of the metabolic
entities is able to benefit from the other’s unique information about the environment; the
uniqueness of the mutual information could reside in either or both the energy-harvesting
or the entropy-reducing functions of each entity.

Figure 2: Cooperative Metabolism: Two distinct metabolic entities fµ
1 and fµ

2, sharing
harvested energy resources and information accumulation. Each benefits the other with
their respective unique mutual information with the environment. Dashed lines indicate
possible inequality of the exchanged quantities.

This is a society of two: a composite metabolic process enabled by the set of relations
between two distinct metabolic entities. Each subprocess (distinct metabolic entity) now
has access to additional transformations between energy and information, that it does not
have on its own. It can compensate for more entropy, and is thus more fit. Without loss of
generality, we may scale this model along the dimension of fµ, such that there is a set of
distinct but cooperating metabolic processes Fµ = {fµi|i ∈ {1..N}}, or along quantities
of fµ

i for a given i, to achieve societies of many individuals, all sharing the benefits of
mutual information.

Figure 3 shows how a “society” of cooperating metabolic entities fµ
i may be reduced

to a composite metabolic entity fµ
∗ identifiable at a higher level of hierarchy, and by the



same token how a CAS at a higher level of hierarchy may be decomposed into its socially
interacting constituent metabolic entities. Composites may be heaped on top of each other
ad infinitum, to the limits of available resources. It’s turtles almost all the way down – at
least to the level of single-molecule machines.

Figure 3: Metabolic Hierarchy: On the left is the constituent view of a CAS, and on
the right, the composite. The cooperative metabolism of two or more distinct metabolic
entities fµ

i (constituent view) may be reduced to a single composite metabolic entity
fµ

∗ (composite view). Likewise, a composite metabolic entity may be decomposed into
constituents fµ

i that are socially interacting for mutual benefit. The dashed boxes group
the functions that have collapsed or expanded between the constituent and the composite
view. Differentiated fµ

∗j may cooperate to form the next higher level, etc.

With this “simple” model, we can generate some interesting scenarios found in nature
– take the case of some of the social insects, ants and bees for example: a single individ-
ual, the queen, has a relatively low-activity energy-harvesting function, and her primary
information-accumulation function is reproduction of all the metabolic entity types as-
sociated with the society. Her army of non-reproductive workers, however, is dedicated
to gathering energy resources to support the queen’s recursion habit, and building an
entropy-reducing environment to protect it. The case of social insects is likely to be a
scenario of metabolic divergence rather than cooperative convergence, but we placed no
conditions on how the composition occurred.

We may also build models of extreme co-dependency, where the energy-providing
and entropy-reducing/information accumulating functions are so tightly coupled between
entities, and the mutual information contained in each is critical to both, that neither
metabolic “entity” can endure without the other, and we may have trouble deciding
whether to call it one entity, or multiple.

As a thought experiment, let us now build a physical boundary around an aggregation
Fµ of such co-dependent entities (let’s say that wall-building is the sole function of one
of the fS

i in the Fµ ensemble), and concentrate the recursion function in another fS
j of

the ensemble (like the social insects). At what point can we say that it is no longer a



society of interacting metabolic processes, but a distinct organism – or the converse, if we
traverse the hierarchy in the opposite direction? I could suggest that we leave the question
for biologists to provide an academic answer to, but the question is inherently difficult
because it crosses domains.

Which serves to illustrate my point: there is a continuum of societies of metabolic pro-
cesses across many levels of CAS: intracellular, intercellular, the various systems compris-
ing an organism, and of course the collective behaviors of multiple cooperating organisms,
to include humans. A composite metabolic process of varieties of energy to information
transformation networks is a useful general model for all of them.

3.6 Comparison to canonical description

This model incorporates Gell-Mann’s descriptive model of CAS based on schema [8]. In
the biological realm, the schema is the genotype; in the social realm, it is encapsulated in
what we call “culture”. In the generic metabolic model, it is the description 〈fµ〉 of the
metabolic machinery of fµ – a compact encoding of the structure, relations, and operations
of fµ for interacting with its environment to collect energy, accumulate information, and
reject entropy; the subprocess fS (or some portion thereof) “unpacks” the schema and
instantiates it as the physical machine fµ . Since fµ interacts with the environment, its
description 〈fµ〉 must perforce also contain mutual information about the environment.

I have commented throughout how the metabolic model accounts for many features
commonly associated with CAS; Table 1 explicitly lists the seven basic features of Hol-
land’s framework [10] and the mechanism(s) or component(s) of the metabolic model that
explain and generate them.

Table 1: Comparison to Holland’s phenomenological regularities
Holland’s feature Generative mechanism in the metabolic model

Aggregation Cooperative metabolism

Nonlinearity
Cooperative metabolism and co-dependency –
the sharing of mutual information

Flows Energy collecting functions and entropy-reducing functions.

Diversity
Variation during instantiation of fµ and/or transcription of 〈fµ〉;
selection through the filter of entropy

Tags Mutual information and cooperative metabolism

Internal Models Description of the metabolic machine 〈fµ〉; mutual information

Building Blocks
Energy collecting functions and entropy-reducing functions, and
variations thereof; variations on metabolic entities themselves

4 Application Notes

In the interest of maintaining as abstract and general a model as possible, I have tried,
throughout the formal description, to abstain from applying the model to real-world
examples. Gell-Mann and Lloyd [9] have applied their analysis of informational measures
of complexity to draw an interesting conclusion about the nature of scientific theory itself:
formulating and describing a theoretical model that is representative of an ensemble comes
at the expense of a reduction of the total information contained in the model. In other



words, the more broadly applicable a model is, the less immediately useful it may be
for application to a specific subject matter (such as a hierarchical domain of CAS); the
coarse-graining of a representative description neglects the equations of motion that may
be needed to describe the fine-grained resolution of a particular member of an ensemble.
A model’s simplicity is both its beauty and its burden, and that is the general approach
I have taken in describing a generative model for the ensemble of CAS domains.

In this section I will try to bridge the gap between abstraction and the real-world with
some brief commentary on applying the model to select case studies at opposite extremes
of the CAS spectrum, and for which it may not be obvious that the model applies: 1)
viruses, and 2) human social systems generally and economic systems in particular.

4.1 Viruses

Viruses are infectious agents that co-opt a host’s cellular machinery for their own repro-
duction. They are not universally considered a form of life because they do not actively
metabolize within their physical boundary. If they do not “actively” metabolize, then does
the metabolic model of CAS still fit them? During their dormant, transmission stage it
is true that they are not much more than some nucleic acid protected by a shell; they
are consuming no energy and accumulating no information. However, the same is true
for some species of bacteria, fungi, and even animals (the tardigrades) – during periods
of environmental stress, they dessicate and form a thick outer protective shell, in which
state they may remain dormant but reactivatible for surprisingly long periods even in
extremely adverse conditions, until environmental conditions reactivate their metabolic
process.

Viruses are often able to infiltrate by “tricking” the host’s normal intrusion protections
– a form of mutual information between the virus and its environs. Once a virus enters
a cell (which it may do by releasing stored energy, such as the tobacco mosaic virus), we
may then identify all the elements of the metabolic model. The virus’ description 〈fµvir〉
contains sufficient mutual information with its host to reprogram the host’s fS

host as a
generator fS

vir for fµ
vir. The host’s metabolic process now becomes the virus’, and so

the metabolic model certainly applies during the virus’ active reproduction stage. From
this perspective, the description 〈fµvir〉 “unpacks” into the totality of host cell machinery,
fµ

host, and is thus perhaps one of the most compact information encodings that we can
observe (it is of course, highly specialized in being reliant on select but critical mutual
information with its host)!

4.2 Human social systems; economics

Some readers may argue that human social systems are inherently different, and question
how this model could possibly apply to and account for the variety and complexity of
interactions and structures in human society. Humans after all are purposeful – do we not
shape our own destiny? Can our capacity for building cities and nation-states and all the
great social institutions that have arisen across the globe and throughout history really be
boiled down to notions as simple as extracting energy from the environment, and using it
to reduce entropy? I submit that indeed they can, while at the same time acknowledging
the awesome complexity of human social CAS – so awesome, and so seemingly qualitatively
different, that it might appear to be governed by a fundamentally different model from the



CAS that are found in the biosphere and produced by the classical biological evolutionary
paradigm.

I offer a simple explanation, within the metabolic model, for the astounding success of
human social CAS – simple, but because of the recursive nature of CAS, having profound
impact. That difference is this: the human capacity for conceptual modeling gives us the
ability to generate new schema, new 〈fµ∗〉 – in a word, it is “imagination”. We humans
generate new fµ

∗ at a much greatly accelerated rate, on the order of days, versus the
years, centuries, and millenia of classical evolutionary adaptation. Furthermore, the rate
at which we generate new fµ

∗ is accelerating as we create technologies that assist us both
with conceptualizing, and with instantiating, new fµ

∗.
Let’s examine this in a little more detail. We denote the metabolic entity of a single

individual with fI
i, where i is one of N individuals. In “flat” societies with little or no

social organization or stratification (e.g., many hunter-gatherer societies), we may speak
of a single social construct fP that encapsulates the metabolic activities of its members,
as in the single level of hierarchy schematically depicted in Figure 3. The operation of fP
is encoded in 〈fP 〉 – the customs, traditions, mores, and taboos that govern the relations
between its members fI

i. In small, flat societies, 〈fP 〉 is small enough to be internalized
(as a mental schema) in its individuals, who use it to instantiate and regulate relations
with others.

It may be the case that environmental stressors (or opportunities) warrant a transition
from fP to fP

∗ – a social reorganization. In such cases, the population must generate a new
schema 〈fP ∗〉 and instantiate it. These reorganizations can be quite drastic and rapid (see
Flannery and Marcus [7] for a survey of such cases). Since individuals are limited in time,
energy, and access to resources, it may be the case that fP

∗ requires dedicated subprocesses
fP ′

∗i to accomplish, as in the arbitrary social organization depicted in Figure 4.
In addition to new ways of organizing people and their labor activities (what Nelson

[14] and Beinhocker [5] refer to as “social technologies”) to increase the total information-
accumulating activity of a society, humans also create physical technologies ([14], [5]) –
the physical artifacts and tools that we typically associate with the word “technology”.
Invention is the process of conceptualizing and describing some machine – a 〈fT 〉 – and
turning it into a physically realized product fT . These technologies, if they are useful,
extend our ability to collect energy from the environment or reduce the total entropy. It
is to the engineering disciplines that we look to optimize a technology’s function to its
intended environment – its mutual information with the environment. Key technologies are
occasionally invented that enable acceleration of new fP : agriculture (meeting the energy
requirements of a larger population), heat engines (using the stored energy of fossil fuels
to more quickly produce physical technologies), universal computation (enabling the more
rapid creation of much more complicated 〈fT 〉 and even testing of their operation in a
simulated environment) are just a small set of examples.

Based on this metabolic model then, we may perceive that economic value is primarily
derived from entropy-reducing functions instantiated in society. There is wide consensus
that economic growth is inherently related to technological progress; in the metabolic
model, economic growth through technical progress is internally consistent with – one
might say, equivalent to – an entropy reduction theory of value. A full treatment of this
concept is not practical here, and I will explore it at greater length in future work.



Figure 4: Multilevel Social CAS: Individuals fI
i form metabolic entities fP ′

j (individuals
may participate in multiple functions). These intermediate entities fP ′

j compose the total
social metabolic function fP .



5 Conclusion

Metabolic activity, when described generically as a composite of thermodynamic and
information theoretic functions, serves as a generative model for features common to all
natural CAS when thermodynamic constraints are applied. Entropy is the most generic
natural selector. Replication is required to repair degeneration due to entropy, and growth
can simply result from “over correction” by repair mechanisms; replication also introduces
recursion over the entire process. Variation (with entropy as possible cause) results in
divergence of predecessor functions. Mutual information accumulates in metabolic entities,
and characterizes the diversity, and – inherently – the adaptation associated with CAS.
While conceptually a relatively simple model, its depth comes from recursion, and its
breadth from variation.

Stated generically in the context of physical systems that must obey the laws of ther-
modynamics, the model applies not only to natural CAS found in the wild, but also to the
“artificial” systems that humans build; i.e., our technologies may be seen as extensions (al-
beit directed and non-random) of the general metabolic model. Thus the metabolic model
of CAS provides an internally consistent unification of economic growth and a theory of
value based on entropy-reduction. In future work I will more fully explore application of
the metabolic model to economic systems.

Finally, the reader who has studied complex systems may note that there is a phe-
nomenological regularity of complex systems that I did not address: scale-invariance (i.e.
power-law relationships: x = ya, where a is a constant). This is a rich subject for further
investigation. The discovery of a power-law relationship in empirical data is a tell-tale
sign that a system is governed by non-equilibrium dynamics – that one is indeed observ-
ing complex phenomena. Having been observed in domain-specific empirical data, the
power-law relationship is perforce also domain-specific, as are the theoretical equations of
motion offered as generative mechanisms to explain them.

The author is not aware of a theory of generic mechanics that predicts how and
where scale-invariance arises in specific domains; and it may be that such a theory for
all complex systems is unachievable because of the “coarse-grained” nature of a universal
theory [9]. If, however, the metabolic model is valid for all CAS, a strong validation
for it would be the analytical or computational discovery of a power-law relationship
generated by the basic model, and the ability to to use that relationship as an indicator for
power-law relationships among variables in specific CAS domains. While not necessarily
applicable to all complex systems, this would be an important advancement for the study
and understanding of CAS, and should be the subject of more research.
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