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Abstract

Computational social simulation (CSS) has proven its utility for basic research in social, be-
havioral, organizational, cognitive, linguistic, evolutionary, and biological sciences. It has been
employed effectively in many application domains including government, policy, commerce, and
industry. Along with basic science, applied problem-solving, and design, large-scale social simu-
lations provide great educational opportunities for exploring and visualizing theories and models
of complex social systems, and studying how they change. This paper reports on several facets
of our approach to improving the realism, viability, and impact of simulation-oriented compu-
tational research in social sciences by i) raising the scale and complexity of simulation models;
ii) grounding computational simulation research on properties of its fundamental constituents
including social objects themselves, information, representational processes and their limits; iii)
linking social simulations to very large data sets and to live streams of data and iv) binding
and modernizing CSS tools into modern cyberinfrastructures compatible and interoperable with
those of many other computational and data sciences.

1 Introduction

There is tremendous interest in computational modeling, simulation, and analysis of social, socio-
technical, and socio-environmental systems, in many different application areas including basic
science, government/policy, and commerce/industry. Computational social simulation (CSS) has
proven its utility in social, behavioral, organizational, cognitive, linguistic, evolutionary, and bio-
logical sciences. Large-scale simulations provide tremendous educational opportunities to explore
and visualize alternative theories and models of complex social systems, and to study how they
change.

In our view, four avenues form the clearest path toward improving the realism, viability, and
impact of simulation-oriented computational research in social sciences: i) raising the scale and
complexity of models; ii) grounding computational simulation research on properties of its fun-
damental constituents including social objects themselves, information, representational processes
and their limits; iii) linking social simulations to very large data sets and to live streams of data
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(e.g. driving CSS with live streams from large sensor networks); and iv) binding and modernizing
CSS tools into modern cyberinfrastructures compatible and interoperable with those commonly
used and under development in many other computational and data sciences (e.g. workflows; data
repositories; analysis/visualization pipelines; traceability and provenance of results to/from data,
theory, and models; reproducibility, etc.)

This paper reports on our thinking during the early stages of a new project called “Simulating
Social Systems at Scale,” hosted and supported by the National Center for Supercomputer Appli-
cations (NCSA) at the University of Illinois. The project’s motivating vision is to create the basis
for, and demonstrate the feasibility of effective, efficient, accessible, very large-scale simulations of
social systems, as a central component of general scientific cyberinfrastructure and computational
science practice.

1.1 Challenges of the scientific program in computational social science

The ultimate goal of a science is obtaining explanations that best approximate the measured state
and structure of the world (Friedman, 1974), independent of domain. Observations and regularities
are the raw materials from which theories and laws are obtained (Salmon et al., 1989). The
particular procedural differences between scientific domains, however, depend on the structure of
the relevant entities and how these are affected when measurements are performed upon them.
Social science is not an exception in this sense.

Explanations need to correctly bridge different levels and scales, but their potentially large
number leads to feasibility concerns. Reducing this complexity calls for macroscale descriptions
from microscale states that are both accessible and deducible (Forge, 1980). A similar tension
exists between individual and collective levels of analysis in society (Brewer, 1991). Deducibility is
essential for theories to be considered candidate explanations, whether the particular problem at
hand is one of prediction (gaining knowledge about the future), retrodiction (explaining the past)
or sampling (accurately measuring reality). Invariance has become a keystone in the edifice of
modern science because it leads often to fundamental explanations by removing complex arrays
of particular interactions, simplifying the experimental and theoretical landscapes. Computational
social science, as the discipline that makes use of an in silico empirical approach, is in the process
of developing methods for finding the invariants and abstractions for making the understanding of
society a more tractable task.

The methods of the physical sciences appear at first hand to be incompatible with some of the
features of social research. One reason is due to the apparent absence of invariance in either the
internal dynamics of social agents or the environment in which they are embedded, leading to large
amount of possible hypotheses that can be formulated and tested without efficient ways to filter
those which are correct (Kincaid, 2004). Biology, in contrast to physics, serves as a good example
for the situation in social sciences: hypotheses about organisms need to be deduced both from
limited measurements in a varying, complex environment and evidence from the past, whose quality
decreases rapidly with temporal distance (Bernstein et al., 2000). Recent success of computational
systems biology in providing sound explanations to diverse phenomena by integrating observations,
theories and information contained both in and about the organism is undeniable (Zhao et al.,
2013), where some invariants have been identified in high-level representation of many biological
processes, and not in the experimental data itself.

Information, a central piece of the establishment of modern biology, appears also to be at the
core of an effective computational social science. Most of the discoveries in organisms related
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to heredity pertain to the analysis of categorical, genomic or contextual information. In turn,
information is then converted to models of the biological systems that greatly simplify the process
of understanding relations between parts and their global effects. In these abstraction process,
networks have become a lingua franca capable of revealing invariants that remained hidden at
more grounded levels of representation (Cioffi-Revilla, 2002). The notion of agency, prevalent in
the concepts behind ongoing research in computational social science, is an information-rich concept
itself that has lead to significant advances (Cioffi-Revilla, 2014).

In view of the above discussion, we propose to address the following three central problems as
the next frontier of (computational) social science. While these problems are embedded in a strong
digital context, it must be stressed that good explanations of phenomena aiming at the development
of solid theoretical arguments from an inherent richness of social structures (Flyvbjerg, 2001), and
not software or hardware projects, are the relevant entities for the notion of any work pursuing the
development of such science (Conte et al., 2012).

1.1.1 Moving from ontological debates to epistemic goals

Instead of presupposing levels of description and categories of objects (ontological), a more sub-
stantial approach to finding explanations attempts to determine the mechanics and the entities in
a generalized way (epistemic) (Van Bouwel and Weber, 2008). By taking this road, four key tasks
become soluble: (1) finding adequate levels of explanation from observable facts and approximating
models, (2) determining the form of the explanations by integrating networks of hypotheses that
may be falsified and are devised as to account for the complexity of social phenomena, (3) con-
structing structural and functional explanations that provide macroscale causal relations through
contrasts of possible outcomes –for instance, T-contrast (Skocpol, 1969) - that match fine-scale
causal explanations (Taylor, 1988) and (4) elucidating social mechanisms that involve both ac-
cumulation of facts and postulating general principles (i.e. covering laws) that may be partially
adequate (Gross, 2009), but neither of which are equatable at all to social mechanisms on their
own.

We consider that the latter view, common to discussions in social science in general, should be
a structural guide for computational social science to realistically extend the knowledge domain
it attempts to serve. While the nature of social systems apparently differs in many respects to
the systems studied in the natural sciences, there seems to be no fundamental reason why an
empirical study of systems of many agents may only be a theoretical device, but rather reach inner
explanatory structures when properly constructed. Cyberinfrastructure and social modeling tools
in this regard must be consistent from the conception up to the implementation, being sensitive to
the fact that interacting with aspects of the social world may introduce unexpected effects (Gross,
2009), for instance, when simulations are interactive (Helbing and Balietti, 2013).

1.1.2 Moving from small worlds to large-scale experiments

Whether experimental, social or historical research (Cleland, 2002), reducing instance size is a
commonplace heuristic for grappling with the complexity induced by systems that interact with
the environment or other systems. For social systems as complex systems, the reduction is justified
by assuming emergent behavior: large numbers of simple units, under similar forces and with similar
behavior, may produce unexpected non-linear responses (Heylighen, 1989). Sometimes the inner
structure of the responses is that of a small world (Kleinberg, 2000), which summarizes the fact
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that in many systems the entities have a statistically preferential and restricted set of interactions
(Amaral et al., 2000). Small-world organization has been extensively observed and studied in
areas such as cooperation (Challet and Zhang, 1997), human brain functional networks (Bassett
and Bullmore, 2006), social and biological communities (Girvan and Newman, 2002) and human
language research (i Cancho and Solé, 2001).

However, scaling limits have been identified for emergent behavior even in small problems
(Barabási and Albert, 1999) and suggested in problems involved social systems (Robb, 1989). Some
complex phenomena require sufficiently large problem sizes for emergence to occur. Moreover, even
in that case, microscale description may not suffice to accurately compute expected outcomes of the
whole system. Such failure in reductionistic explanations may be characteristic of the distinction
between emergent and non-emergent systems (Wayne and Arciszewski, 2009) when either (1) there
exist fundamental differences in the presupposition of the objects that interact at the different
phenomenological levels, or (2) the description of the ensemble of the objects and their environment
is incomplete (Batterman, 2001). One of those failures is the inability of models to account for the
variations (either deterministic or random) of the world. Their origin may be intrinsic to the nature
of the model of the world (i.e. agents only sample a flux of events) or dependent on the interactions
with the agents (i.e. the model of the world is mutable and agents can modify it). Briefly, small-
worlds are locally dependent models that do not often account for changes in the environment,
crucial for unraveling the complexity of events in social systems; empirical embeddedness (Boero
and Squazzoni, 2005) is a key property that cyberinfrastructure for computational social science
ought to ensure when required.

1.1.3 Moving from information by-products to information-centric representations

For general theories and laws to be deduced from data, adequate information representation is
fundamental (Van Fraassen, 2010). Representations frequently denote the entities, their properties
and the mechanics of the system they compose; in the abstract, representations in agent-based
systems are a special type of information that is often subtly embedded in the dynamics or the
resulting patterns of emergence itself (Bickhard, 2000). The relative nature of information as an
exchange between agents, as well as the intrinsic information content of the world in both static
and dynamic contexts reveal a close relationship between information and circumstance (Barwise,
1986). For instance, a successful theory is capable of elucidating which constraints exist in a
system, and what their applicability is such as in understanding how agents consult, cooperate and
compete amongst themselves (Eaton et al., 1998). If the constraints change, the circumstances of
the agents may lead them to new outcomes. Using small-world theories, when disconnected from
the relational information contained both in the agents, the environment and their interrelation is
a most probable cause for incompleteness in the specification of the rules of a system (e.g. partial
representations, incomplete concept hierarchies) that leads to poor inferences and models (Li et al.,
2013).

In a sense, gaining knowledge about a system may be equated to exhaustively finding the correct
description for all the constraints that govern its dynamics. A theory then becomes a collection
of related constraints capable of being instanced to yield specific predictions or explanations. But
constraints are inferred from data as instances of known patterns. Hence, patterns (detailed pre-
scriptions that match with particular instances) are high-level information tools that, coupled with
adequate experimental design and data analysis tools, can lead to powerful insights in domains as
complex as ecology (Grimm et al., 2005). Cyberinfrastructure that enables large-scale simulations
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in computational social science should provide means to instrument, capture and systematize infor-
mation at different levels of representation, desirably with integrated automated pattern-matching
and machine learning mechanisms to facilitate research.

2 Components of a large-scale simulation framework

In this work, we propose a general architecture for the development of computational social science
experiments, rooted in the capabilities of existing and future cyberinfrastructure and compatible
with the twin goals of i) achieving more complete and robust understanding of the useful range
of social objects and processes (i.e., developing general social theory); and ii) achieving greater
predictive and explanatory power in regard to specific social settings and cases (i.e. social problem
solving and design). This section is concerned with its structural and functional description, as
well as with some general properties and attributes expected of such infrastructure.

2.1 First-class entities: experiments as abstract contracts

Experiments are detailed specifications of realistic or abstract settings that contain the necessary
and sufficient information constraints and processes for determining whether a particular set of
assertions about the state of the world may be rejected, be subject to further enquiry or be con-
sidered as supported to a certain level of significance (Gooding, 2012). The specification contains
the following general elements

• the pre-conditions of the experiment (i.e. state of the world prior to executing the actions,
including variables out of the experimentalist’s control),

• a detailed prescription of how processes are transformed into steps connected via intermediate
inputs and outputs,

• a specification of the post-conditions after the processes are executed,

• a representation of the expected measurement outcome(s) and

• an analytic prescription for obtaining significance levels that would determine the success of
the experiment.

Arguably, the main difficulty of performing experiments in the social sciences lies in the implica-
tions of (a) having agents that can interact with the world in complex, (b) the practical difficulties
involved in finding or creating the appropriate conditions (c) and the existence of potential un-
ethical consequences of enacting them in many situations (Benton and Craib, 2010). By replacing
agents with any sufficiently complex entity, determining the practical possibilities of observational
or experimental settings and bearing in mind the ethical consequences of any experiment, the sit-
uation is not so much different from the natural sciences in many contexts. In such cases, though
experiments come to the rescue as as abstract specifications of possible worlds that strictly follow
certain principles or laws (Gooding, 1992; Brown, 2011) that are not enacted in reality.

In the same way that a scientific instrument embodies the principles of a domain-specific context
(i.e. an information background) (Baird, 2004), thought experiments contain the necessary and
sufficient elements for theories to be tested. However, they are also present in the form of the
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conceptualization and design of experiments executed in real settings. In social sciences, thought
experiments have been conceived as elucidating mechanisms in general social contexts for problems
such as providing alternative explanations to the Social Contract as the governing element of
society (Latour, 1998), causality of historical events (David, 2007) and comparative analysis of
social scenarios (Schneider and Wagemann, 2012). In addition, thought experiments also define
language that facilitates communication amongst peer researchers in expert audiences (Reiner,
1998), essential to creating community and critical mass in computational social science.

Therefore, experiments and their abstract specifications are first-class objects in our design of
large-scale social simulation infrastructure. Their information representation is central for orches-
trating the underlying computing infrastructure and subsequent data analysis.

2.2 Multi-agent systems: programs and constraints

The fundamental construct for general social simulation is the Agent-Based Model (ABM). An
ABM most often comprises a set of agents which are the units of action, and some kind of world
or environment in which the agents and their interactions are situated. There may be information
flows between agents, and these may be represented as either coupled agent-environment interac-
tions, or as explicit communications. This conceptualization of ABMs gives rise to three modeling
components: 1) a physical world, 2) the agent’s physical affordances (e.g. sensing/effecting) and
decision procedures; and 3) an inter-agent communication infrastructure. Given the experimental
philosophy and scientific-epistemic goals outlined above, these three layers provide serious con-
straints on the capabilities and scalability of ABMs. These issues are grounded in fundamentals of
computational simulation and representation infrastructure, as constrained by the scientific goals
such as reproducibility, and control over experimental conditions. Put briefly, on one extreme
we could envision all agents acting independently with no interactions among each other. This
frees us to execute agents as rapidly as computation resources permit, completely in parallel – an
approach known as divide-and-conquer, widely used in extreme-scale data-processing. However,
this approach obviates models in which agents interact, radically reducing the scope of possible
science. It also eliminates the control needed for reproducibility, because there is no information
about or possible control over the ordering of actions, which thus may turn out to be random and
unrepeatable. Unfortunately, introducing interactions among the three model components (world,
agents, and communication) puts extreme limitations on the scalability of models for fundamental
complexity reasons. Thus the goal of achieving a robust and highly scalable cyberinfrastructure
for CSS requires rethinking some simulation and experiment fundamentals and hence possibly re-
thinking the fundamentals of social theory that they represent. Possible refinements for scalability
include probabilistic simulations, quality vs resource tradeoffs, and moving from deterministic to
statistical representations of social phenomena.

2.3 Workflow-to-infrastructure as a goal satisfaction problem

Since experiments are first-class objects in our approach (above), it is possible to reason about
dynamic matching between the emergent resource needs of a set of experiments and their scientific
goals. Our idea here is to support dynamic provisioning of data sources, analysis tools, and simula-
tion resources based on analyzing the goals of the experiment, exploring alternative provisionings.
For example, a scheme like Decker and Lesser’s TAEMS and PGP models for planning (Lesser
et al., 2004) would allow this type of reasoning, based on satisfying quality, cost, and time tradeoffs
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for alternative experiment workflows, given available infrastructure components.
There exist similar attempts to synthesize execution-to-hardware mappings, most of which

rely on using middleware stacks to make parallel access transparent. The Mesos platform is an
example that in particular abstracts nodes that can execute MPI and Hadoop (Hindman et al.,
2011). Another example is portfolio scheduling of scientific tasks for data centers in which a ledger
of multiple infrastructure options are compared against economic criteria in terms of energy and
estimated CPU time (Deng et al., 2013). Communication-aware schedulers optimized for expensive
all-to-all operations exist (Subramoni et al., 2014) with analogues for mapping programs to cloud
computing resources (Gupta and Kalé, 2013). These approaches are expensive and operate during
the execution, not in general prior to it.

Another way to generate execution-to-infrastructure mappings is to interpret them as goal sat-
isfaction problems with search and optimization-based satisfiers. Goal-driven workload assignment
and redistribution is well a known strategy in clouds and supercomputers (Saifullah et al., 2013;
Tang et al., 2013; Wang et al., 2013; Prabhakaran et al., 2014). Current work around execution-
to-infrastructure mapping based on some preliminary form of goal satisfaction (Czarnul, 2013;
Sarnowska-Upton, 2013) suggest this route is promising. In short, automated mechanisms that re-
moves the complexity of infrastructure relates issues are central to increased supercomputer usage
as well as the use of modeling and simulation across disciplines (Kelly et al., 2015). It is our view
that an AI-oriented strategy will be beneficial beyond large-scale modeling in computational social
science.

2.4 A proposed architecture for large-scale computational social science exper-
iments

The general constructs for an integrated architecture aimed at enabling experimental work in
the social sciences under the paradigm of very large scale multi-agent systems integrated into
cyberinfrastructures are shown in Figure 1. Our design has been in part motivated by the ideas
and goals discussed in Axelrod (1997), and extended to aim benefiting from existing state-of-the-art
cyberinfrastructure.

With respect to actual usage of the system, we propose a series of reconfiguration steps that
social science cyberinfrastructure would follow during execution of an experiment.

2.4.1 Contract specification phase

Ontology development for representing scientific experiments is a long standing research area (Noy
and Hafner, 1998). In conjunction with semantic provenance mechanisms (Sahoo et al., 2008),
they are essential for making tractable the growing number of experimental explorations that are
openly released into the public and research domains and being able to reason about the life cycle
of scientific experiments (Mattoso et al., 2010). Ontologies for describing experiments exist in
materials science (Cheung et al., 2008), bioinformatics (Usadel et al., 2006), biomedical research
(Dumontier et al., 2014) and experimental microbiology (King et al., 2009), among others. Our
current target ontology is EXPO (Soldatova and King, 2006) due to its generality in describing the
context and contents of experiments.

A contract specification is composed of several elements. With respect to agents, both their
communication model as well as their input data sources (i.e. archival, live) need to be specified
along with their observables, measurements and ideally any associated hypotheses. In addition,
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Figure 1: Abstract, high level block representation of a large-scale MAS experimental framework for
enabling computational social science experiments. Clear separation of responsibilities at each stage
in the execution of a computational social science experiment allows decoupling from particular
details of the underlying computing infrastructure.

a description of the world in which agents interact and act is necessary, involving its distributed
representation and its spatial features (e.g. GPS data, time constraints, update policies). The
description is then compiled into a contract file as input to the next phase.

2.4.2 Contract-to-execution phase

Once a contract is assembled, several software pieces are configured and instanced. a massively
parallel MAS simulation toolkit will consume parts of the contract related to agent and world
representations, constructing an instance of the specified model afterwards. Presently, the ROSS
Time Warp System (Carothers et al., 2002) and (Collier and North, 2011) stand as examples of
commonly used toolkits to be supported in such workflows. Our current efforts include the design
and development of a new toolkit for agent-based models under uncertainty. In addition, other
components for handling distributed representations of spatial (Brown et al., 2005) and temporal
(Mattern, 1989; Nielsen et al., 2001) world models will be implemented and integrated.

One important consideration is the common execution background in systems that may be used
by computational social scientists. The aim of this architecture is to be flexible enough as to operate
in any provisioning-capable system (e.g. supercomputer, cloud) where middleware packages such
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as MPI, Hadoop and others may be installed and used by the different toolkits to make distribution
transparent. The result of this phase is an executable specification in an intermediate language for
later optimization to the particular infrastructure settings.

2.4.3 Model execution phase

As previously described, a specialized pre-execution step will transform the executable specification
into a concrete execution schedule that matches the underlying infrastructure. The process needs to
interact with workflow management systems and resource descriptions in order to gather sufficient
information as to determine (possibly sub-) optimal resource allocation for a given simulation. The
concrete executable schedule may be later hand tuned or through determination of simulation wide
scaling laws.

2.4.4 Execution-to-outcomes phase

After the model is executed, outcomes are classified in three categories: profiling data in relation
to communication topologies, human-readable machine execution logs and experimental results
in structured form. In particular, standard scientific file formats are expected for later analysis
and visualization. An important element of the latter process is determining whether experimental
results come from a data flow in a continuous simulation (hence, derived from a sampling metaphor)
or from a single execution unit. Compliance with standard scientific data formats such as NetCDF
(Rew et al., 2006) and HDF5 (Yang et al., 2005) is to be implemented as well.

2.4.5 Post-experiment data management phase

After execution, a data consolidation toolset will provide visualization and analysis facilities after
experiments are performed. Considering the dynamics of social science research and the scope
of the types of research to which this architecture is aimed at, tools that allow interaction and
have a low learning curve are ideal. In that sense, significant experience with large volumetric
data analysis and visualization has been obtained through the yt Project (Turk et al., 2010), one
of the initial platforms that will be evaluated for integration in our architecture. Guaranteeing
attributes such as data curation, provenance and reusability are critical for enhancing the research
experience in computational social science (Bechhofer et al., 2013) as to generate a fully digital
context appropriate for community building and its broader scholarship.

3 Application targets

Social system are in general those in which a set of interacting entities share information towards
explicit or implicit common goals such as lowering difficulty boundaries, survival, coordinating
responses to threats or gaining knowledge through cooperation (Luhmann, 1995). Finding research
domains where social systems are central is critical for assessing the utility of large-scale ABMs as
research tools. In particular, we propose utilizing this infrastructure to model events in language
evolution, soil microbiology, small interference RNA (siRNA) based therapies in neuromedicine and
organizational evolution.
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3.1 Soil ecology

The bacterial ecology of soils is a driving factor of fertility, productivity, and economic growth
(Wardle et al., 2004). Function-wise, fungi and bacteria are dominant with respect to fertility
because of their decomposition activity in the soil food web (Anderson, 2003). Aboveground and
belowground microbiotas differ from one another and possess high degrees of specificity in their
activities and molecular products; they tangle mutually through both negative and positive feedback
loops (Ehrenfeld et al., 2005). In summary, the mechanics of soil microbiota is complex and driven
by a soil food web that is subject to a variety of factors that work at the micro and macro levels.

The bioavailability of C, N2, CO2 and SOX depends on bacterial concentrations and species
(Singh et al., 2004). Disease detection mechanisms in the form of excess of various molecular
products trigger defense actions in communal plant bacteria, ultimately leading to collective re-
sponses against possibly pathogenic populations (Whipps, 2001). Resistance to environmental
changes has been observed to occur thanks to dense mutualism networks in which several organ-
isms have adapted to perform the same functions, to direct chemical signaling and to coordinate
the expression of resistance mechanisms (Griffiths and Philippot, 2013). Individual cell-to-cell
communication mechanisms exist and are modulated by several factors that affect a series of del-
icate molecular signalling pathways. Two examples are the signal-controlled biofilm development
strategies (Kolenbrander et al., 2010) and the more indirect, asynchronous horizontal gene transfer
mechanism mediated by plasmids and viruses (Aminov, 2011).

ABMs have been used for modelling ecological responses of collections of individual microorgan-
isms. Hellweger and Bucci (2009) provides an extensive review of existing literature on the subject
including techniques, theoretical aspects and challenges. Application examples include modelling
host-pathogen immunology responses (Bauer et al., 2009), biofilm formation (Lardon et al., 2011),
bacterial chemotaxis (Emonet et al., 2005) and selectivity responses to synergistic drug combina-
tions (Lehár et al., 2009). Modelling molecular rich environments has also been performed through
a molecules-as-agents approach, where reactions are interactions between agents with responses
modulated by calculating kinetics from ODEs (Sneddon et al., 2011). However, existing applica-
tions of ABMs to understanding interactions soil ecology seem to be restricted to few examples
such as the effect of earthworms in soil structure (Blanchart et al., 2009).

Successful application of ABMs may bring a new perspective into soil microbiota as long as
a scalable approach is feasible (approximately 109 ecologically diverse bacteria per gram of soil
are present). Applied research targets include engineering the equilibrium of bacterial populations
to specifically favourable to crops in sustainable ways (Sturz et al., 2000) and designing remedia-
tion strategies by transplantation of foreign soil bacteria accompanied with inorganic compounds
(Nwachukwu, 2001).

3.2 siRNA-based therapies in neuromedicine

Small interference RNA (siRNA) is a mechanism of molecular pathway regulation in which precisely
engineered small RNA strands (21-25 bps) bind selectively to mRNA required to produce a given
protein, leading to its downregulation or complete inhibition (Pushparaj et al., 2008). This mech-
anism was first identified in viral defense and gene silencing mechanisms in plants (Ratcliff et al.,
1997) and later experimentally demonstrated in Caenorhabditis elegans (Fire et al., 1998). Since
then, siRNAs have become a major technology for both discovering new molecular pathways (Hood
et al., 2012) and aspects of existing ones and for intervening in living systems with an emphasis in
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biomedical applications.
RNA interference occurs in mammalian neurons (Krichevsky and Kosik, 2002) and persist up

to three weeks after therapeutic administration (Omi et al., 2004). Small RNA-mediated cell-
to-cell communication is facilitated by exosomes (Frühbeis et al., 2012). The latter is critical in
NMDA receptor-mediated excitotoxicity and ischemic neuronal death (Belousov and Fontes, 2016)
and a strong connection of gap junctions and mRNA to gene expression patterns in human seizure
disorder is known (Naus, 1991). There is direct evidence of sensorial reconfiguration dependency
on mRNA and siRNA, with the olfactory system as a prime example (Juang et al., 2013). However,
much ground needs to be covered in terms of mapping the diversity of regulatory functions that
RNA interference may allow in conjunction with the growing body of knowledge about omics of
the neuron (Elia and Finkbeiner, 2013).

Designing siRNA therapies against neurodegenerative diseases is of particular interest and dif-
ficulty because of the inherent complexity of the molecular pathways involved in brain activity and
its impact towards finding molecular medicines for the brain (Davidson and Paulson, 2004). While
significant progress has been made in the last ten years in molecular neurobiology (Forman et al.,
2004), further integration into a whole brain picture remains as a grand challenge; siRNAs appear
to be an important part of the puzzle.

There are no direct known applications of ABMs to model siRNA inter-cell communication
despite the agent-like nature of neurons. Modeling of signal transduction in general (Chylek et al.,
2014) had been attempted through rule-based systems, a technique that is becoming more frequent
due to its representational convenience and analytic properties (Maus et al., 2011). All approaches
attempting to overcome challenges of multi-scale modeling in biological systems (Qu et al., 2011) in
the light of new perspectives made possible are immediate targets for large-scale ABM development.
Open questions in siRNA cell-to-cell communication include how to develop a rational basis for
improving safetly (Boudreau et al., 2011) and estimating the potential effectiveness of new siRNA
therapies (Shankar et al., 2005).

3.3 Emergence of organizations

Organization is a structural and functional feature of many abstract and complex systems. In
human organizations, one perspective about its emergence is theoretically linked by the existence
of multiple networks and transposition: when individuals from two different social networks share
a new common environment, they bring knowledge of their previous context (patterns and rules)
that serves as an a priori structuring element for new sets of behaviors, expectations and dynamics
(Powell et al., 2012). Elements such as the notion of ownership, division of labor, fairness and others
also allow moving beyond emergence to convergence (Fulmer and Ostroff, 2016). More over, the
acquisition of individuality for an organization is an interesting phenomenon that is constructed,
or rather emerges from other types of individuals (Scott, 2013).

Literature on agent-based models for the emergence of organization is extensive. Helbing (2012)
provides an overview of many relevant application areas ranging from modeling of socio-economic
systems to responding to systemic risks and managing internal complexity. Many of these models
are based on the small-world network approach in which a large portion of the apparent complexity
is reducible to few local interactions and few functional motifs (Amaral et al., 2000). Small-world
networks are limited in various important situations, as when systems are coupled and clustering of
entities in the organization is to be expected (Bruch and Atwell, 2013). The latter is critical when
simulations are a vehicle to understand how human decisions are made in coupled human-natural
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systems (An, 2012).
At present, we are exploring possible applications of large-scale agent based models to areas

tied to public policy such as innovation diffusion (Kiesling et al., 2012), design of macroeconomic
policies (Fagiolo and Roventini, 2012), dynamics of health systems (Luke and Stamatakis, 2012)
and modeling of consumer energy choices (Rai and Henry, 2016). As indicated in the discussion
above, the potential of ABMs should not only predictive but also retrodictive. Current literature
on reconstructing ancestral socio-ecological systems (Heckbert et al., 2013) is suggestive on that
particular line of research.

4 Conclusion

The Computational Social Sciences can only benefit by the support of advanced cyberinfrastructure
that integrates elements including streaming live data as both input and output, complex world
models based on physical reality such as geographic information systems, computational and data
infrastructure for running extreme-scale, multi-component and multi-level models; advanced com-
munication models that support research on information-centric social phenomena, and integrative
frameworks such as workflow systems, automated goal-to-workflow-to-infrastructure matching, and
foundational scientific models. The project we report on is providing the seed and proof of concept
of this integrated cyberinfrastructure at scale, along with identifying major bottlenecks and new
theory needed to realize its vision.
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