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Abstract. To increase the level of collective action to solve problems related to 

sustainability and public health behavioral scientists have shown that the use of 

social influence and peer pressure can be effective. How to nudge a small set of 

individuals to generate cascades of cooperation? Using a stylized agent-based 

model we explore how different assumptions on network structure and 

attributes of agents, as well as forms of feedback will influence the level of 

adaptation. Our analysis shows that targeting those who are most socially 

influenceable is more effective than those who are most or best connected in 

social networks. 
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1   Introduction 

Many of the challenges facing contemporary society are collective action problems, 

varying from emission reductions to reduce risks of climate change or vaccination for 

infectious diseases. Social scientists in various disciplines study collective action and 

there is a good understanding of the ability of small homogenous groups to cooperate 

in commons dilemmas [11]. Many of contemporary problems such as climate change 

and pandemics cannot be solved by small scale communities alone. What is needed is 

a better understanding of collective action in larger heterogeneous groups. 

Although governments address collective action problems by implementing rules 

and legislation through a legal and parliamentarian process, this does not necessarily 

lead to behavioral change. We are interested in exploring findings from behavioral 

studies that can contribute to solving collective action problems. Empirical research 

has shown that individuals have an increased likelihood to participate in collective 

action due to social influence, such as social pressure and reputation [3], [5], [8]. 

Examples include the provision of data on energy use and voting turnout of neighbors 

and towel recycling rates of other hotel guests leading to significant increase of 

energy savings, voting turnout and towel recycling. 



Can we leverage this effect of social influence by nudging the right individuals to 

contribute to the public good? Targeting influential persons may lead to cascades of 

cooperative behavior. In fact, cascades of cooperative behavior in social networks 

have been found in [4] where participants played one-shot social dilemmas. 

Experiencing cooperative behavior lead to increased likelihood of cooperative 

behavior in future games with other participants. As a cooperation event had an 

impact beyond the direct interaction of the participants and spread through the 

network. 

Strategies to spread the influence in social networks have been studied with regard 

to viral marketing (e.g. [8]). Such studies are mainly focused on information 

spreading, the nodes are influenced by neighbors not by their own preferences. 

Centola [1] showed that behavioral change spread faster in a clustered network 

compared to a random network. This is in contrast to the spread of information. 

Hence information diffusion is a different process than diffusion of behavioral 

change. One of the proposed reasons is the importance of peer pressure. Only when 

enough neighbors have adopted the new behavior, this leads to adoption of others. For 

the spread of information or pathogens just having one of the neighbors being 

“infected” is sufficient to propagate the information or pathogens. The short cuts in 

random networks make that information and pathogens spread quickly.  

In this paper we present a stylized model of agents making decisions to contribute 

to a collective action problem. By contrasting different variations of clustered and 

random networks we explore when collective action is higher. Furthermore, we 

explore the attributes of individuals to nudge to increase the level of adoption. Finally, 

we compare different strategies of increasing collective action. 

2   Collective Action and Social Networks 

Collective behavior can be triggered by a small number of “seeds”. Building on the 

work of Granovetter [7] presented a threshold model that works as follows. Suppose 

there are 100 individuals who join a riot when x others a rioting, where x is the 

threshold of the individual. All individuals have a unique threshold varying from 0 to 

99. The individual with threshold 0 starts rioting, and the individual with threshold 1 

will join, etc. until all 100 individuals join. The distribution of the thresholds affects 

the size of the riot. Schelling [14] presented a similar model. He assumes that an 

individual participate if enough others will do so too. Schelling’s model depends on 

the expected participation, and also here the distribution of expectations leads to 

different macro-level outcomes. 

There has been substantial work on collective action and social network since. For 

sophisticated reviews of this literature we refer to [2], [9], [16]. 

3   Model Description 

We will now discuss a very stylized model of agents who make decisions about 

adopting behavior A or B. Each behavior provides a personal reward to the agent. 



Furthermore, each agent’s utility of the action it is taken is affected by behavior the 

network neighbors. Initially all agents have behavior A. What are the conditions for 

which behavior B is adopted? 

The utility of a behavior i consists of an individual part and a social influence part. 

The individual part expresses the degree of fit between the behavior and the 

preferences of the consumer. In the model this individual utility is expressed as the 

difference between the personal preference of an agent and the behavior. The personal 

preference of agent i, pi, is expressed by a value between 0 and 1. In this model we 

only vary the preference for behavior B assuming a default preference for behavior A 

equal to pA.  

The social influence holds that the utility of a behavior increases when more 

network neighbors have the same behavior. The variable xA denotes the average 

fraction of network neighbors with behavior A. The total expected utility of behavior 

is equal to: 

AiAiiA xpUE ⋅−+⋅= )1(][ ββ  (1) 

)1()1(][ , AiBiiiB xpUE −⋅−+⋅= ββ  (2) 

 

The components of the utility function, the individual part and the social part, are 

weighted with βi and 1-β, with βi ∈ [0,1]. A low βi holds that the personal preference 

is weighted less, as is usually the case with less innovative people (Rogers, 1995), 

whereas a high βi holds that the social needs are weighted less, as is usually the case 

with more innovative people.  

 Agents make decisions each time step with probability pU. When at time step 

t agents update their decisions they make use of the information of other agents from 

time step t-1. If the expected utilities are equal one of the options is chosen randomly. 

If E[UiB] > E[UiA], behavior B is adopted. 

 Figure 1 shows the minimum level of pi,B that is needed for an agent to chose 

behavior B. In the beginning of the simulation, when xA is high, only agents with a 

high value of β, the innovators, will adopt. Agents who are more affected by social 

influence (low β) will only adopt if the majority of their neighbors have adopted. 

 



0
0.2
0.4
0.6
0.8
1

00.20.40.60.81
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

minimum value 

of pB

xA

beta

 

Fig. 1. The minimum level of pi,B for an agent to adopt behavior B. 

. The agents are located in a network. This network is generated by first placing N 

agents randomly in the model space of dimensions 1x1. The agents are connected via 

links so that a parameterized average network density is achieved. The probability of 

any two agents being connected to each other is calculated so that the probability of a 

connection between any two agents decreases as the spatial distance between them 

increases.  The probability that a short-length connection will be made rather than a 

long-distance connection is determined by a parameter, D, which represents the 

desired link length in the network.   
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where n is the average number of links in the network, d is the average network 

density, D is the desired length-scale for generating networks, and N the number of 

agents.  When D is small, i.e. D = 2, agents will be preferentially connected to agents 

within their immediate spatial vicinity.  When D is larger, i.e. D = 10, agents are more 

connected with individuals at greater distances from Ego, that is, they are more 

'globally' connected (Figures 2 and 3). 
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Fig. 2. The effect of D on the network structure. With D=2 the connections are more local 

compared to D=10. 

 

Fig. 3. Examples of network structures. Left is for D equal to 1, and right is for D equal to 10. 

In the model analysis we explore the effect of homophily, the similarities of attributes 

of agents in a network [10].  Homophily is implemented by the way how agents are 

put randomly on the screen. If there is a high level of homophily, the horizontal 

position is determined by the values of piB. If the agent is not allocated based on 

similarity it is placed randomly on the screen irrespective the values of piB. As a 

consequence, we can vary the level of homophily by the frequency fp in which agents 



are placed on the screen based on their piB value. In the results reported in this paper 

fp will be varied from 0 to 1.   

 In our model analysis we will include interventions. An intervention is 

assumed to represent an incentive for an agent to make behavior B more attractive. 

This is implemented to increase the value pi,B by ε. This “nudge” may trigger the 

agent to switch from behavior A to B. In the next session we explore different ways to 

target which agents to nudge to have the most effect. Independent of the rule who to 

target, only agents who have not been nudged and have not adopted behavior B are 

considered. 

4   Model Analysis 

In this section we present some initial results of the model. The model is implemented 

in Netlogo and available at http://www.openabm.org/model/2587/version/1/view. For 

each parameter combination we explore we run the model 100 times for 100 time 

steps. We report the average level of adoption of behavior B in the graphs. The 

default parameter values are listed in Table 1. 

 Figure 4 depict some illustrative results of the model simulations for a 

network with D equal to 1. The network where agents allocate based on the 

homophily assumption show adoption in a cluster of the network. When there is no 

homophily, the adoption is spread among pockets of the network. 

Table 1.  Parameter values used in the model analysis.  

Parameter Description Value 

βi  Sensitivity of agent to social influence [0,1] 

pA  Default preference for behavior A 0.5 

pi,B  Preference for behavior B by agent i [0,1] 

D Desired link length [1,10] 

N Number of agents 200 

d Average network density 8 

pU  Probability an agent update it’s state 0.5 

fp  Level of homophily [0,1] 

ε Nudge 0.1 

 



 

Fig. 4. Examples of spread of adoption of behavior in a network with no homophily (left), and 

with homophily (right). 

In the analysis of the model we will use a default case where agents only receive 

global feedback. This means that xA is the same for each agent, namely the share of 

behavior A in the whole population. Hence network structure and homophily do not 

impact the outcomes. Without an intervention the average fraction of behavior B after 

100 ticks is 11.4%. 

 The next step is to compare the effect of local information. We show that 

there is a significant effect of providing information of adoption of behavior B in the 

direct local network. Figure 5 shows the result of adoption of behavior B for different 

assumptions of network structure and homophily. In all cases the adoption rate 

increases. It increases especially if there is a high level of homophily. In such a case 

agents who have similar preferences are switching to behavior B is a small part of 

their neighbors adopt. Note that other parts of the network consist of agents who do 

not prefer behavior A and will be very difficult to change.  

 When the network structure is more clustered (low values of D) the adoption 

rate is also higher.  Hence, just providing local information instead of a global 

aggregate will increase the level of collective action. This effect is less profound in 

random networks (D=10), as found by experimental studies of Centola [1]. 
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Fig. 5. The level of adoption for different values of D and different levels of homophily. 

 

The next set of experiments compares four different types of interventions. An 

intervention is a sequence of 25 nudges of different nodes. We start the intervention at 

time step 25 after the non-intervention adoption of behavior B has spread through the 

network.  

We compare four ways to define which agents who have not adopted B to target. 

The first option is to target agents the highest preference for behavior B (value of pB). 

The second option is to target agents with the lowest level of being affected by social 

influence (value of β). The third option is to target with the highest degree (number of 

neighbors), and finally the forth option is to target agents with the highest closeness 

(meaning the lowest average path length with any other node in the network).   

Table 2 shows the average adoption share for different assumptions of homophily 

and network structures. We find that on average targeting those agents who are least 

vulnerable to actions of others is the most effective strategy. Agents who are not 

socially influenced by others and not yet adopted behavior B are more likely to be 

affected by the nudge. A nudge can get such an agent switch and nudge their 

neighbors. Targeting agents who have most connections is least effective since peer 

pressure reduce the effectiveness of the individual nudge.  



Table 2.  Parameter values used in the model analysis.  

Strategy Percentage of Behavior B 

Default 20.3% 

Target individual preference pb  24.4% 

Target social influence β 26.0% 

Target degree 23.3% 

Target closeness 23.5% 

 

When we look at different assumptions of homophily and network structure we 

find that targeting agents with high values of β is not always the most effective 

strategy. In networks with high homophily (fp ≥ 0.8) and high levels of clustering (D 

≤ 6) targeting agents with high pB values is more effective. The reason is that in such 

networks it is most effective to unlock clusters of agents who like individually 

behavior B but are locked due to reinforcing social influence of agents still following 

behavior A. 

5   Conclusion 

This paper provides some initial results to catalyze collective action in social 

networks. The aim is to understand who to nudge to adopt preferred behavior such 

that this leads to cascades of adoption of preferred behavior. We acknowledge that the 

stylized model can be improved by including more specific assumption of human 

behavior such as how derive information (we assumed full information), a change of 

the preference for a product (e.g. due to price changes). We also made simplistic 

assumptions about the underlying distributions of the attributes of the agents. Future 

sensitivity analysis may reveal the importance of those assumptions. 

 One of the challenges is to test the model on empirical data. This is one of 

the reasons we are implementing controlled experiments using websites and mobile 

devices where we can test collective action in large artificial networks.  

 Although the paper is a very simplistic model of human behavior, it provides 

some interesting findings. Just providing feedback to agents on the adoption in their 

social network instead of global level information increases the adoption of the 

desired behavior up to 400%. Hence, more targeted information to consumers can 

increase the adoption rates. The second finding is that in the current version of the 

model targeting agents who are not likely by influenced by decisions of others is the 

most effective strategy to increase the adoption rates. 
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