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Abstract. The dynamics that arise from dyadic processes, such as those
observed in married couples, generate a cascade of e�ects�some good
and some bad�on each partner, other family members, and other so-
cial contacts. Although the e�ects are well documented, the processes
associated with the varied outcomes are not well understood. We cur-
rently have two methods of simulating dyadic interaction in married
couples�an algorithm-based ABM and a particle �lter. Although both
work reasonably well, neither fully captures the dynamics of an evolv-
ing social process as well as we would like. Recently, we developed a
third method of generating couple dynamics model using a Hierarchical
Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) (Johnson
& Willsky, 2012). We review the how this technique generates plausible
dyadic sequences that are sensitive to relationship quality and provides
a natural mechanism for simulating micro-social processes.

Keywords: dyadic processes, micro-social dynamics, Hierarchical Dirich-
let, Hidden semi-Markov Model

1 Introduction

Social scientists studying the dynamics of ubiquitous self�organizing dyadic pro-
cesses�either as family units or merely actors in a fecundity play�have lit-
tle insight into the critical features that predict, or even describe, sustained
coupling. For humans, this is critically important: Evidence suggests that the
marital relationship has unequivocal e�ects on health�good ones protect and
bu�er its constituents and bad ones are associated with having increased risk for
physical maladies (Kiecolt-Glaser & Newton, 2001; Kiecolt-Glaser et al., 2005).
This e�ect extends beyond the dyad�a distressed marriage is associated with a
poor parent-child relationship, increased psychological problems in children, and
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should the relationship end, neither the children or the adults are immune�each
endures greater stress and accompanying decreases in health (Fagundes et al.,
2011) and �nancial stability.

Despite these consequences and decades of research dollars spent to examine,
reduce, or prevent a distressed relationship, to date, marital researchers have
only identi�ed a few features of an interaction that are associated with marital
distress. Moreover, during the past decade theoretical and technical advances
allowed investigators in this area to extend the literature by capturing more
and better audio, video, and physiological data across di�erent tasks, settings,
and length of observation. Yet aside from higher levels of negativity and more
extended chains of negative reciprocity typically seen among distressed couples,
few summary or sequential features of dyadic interaction consistently predict
marital quality, and none predict marital outcome.

While investigators continue to be intrigued by the intricacies of interper-
sonal dynamics, the past decade of work has shown that these processes are not
easy to study nor do scientists have a good understanding of them. In e�ect, 12-
15 minutes of dyadic interaction generally provides substantial and sometimes
predictive information about a couple, but the latent generating mechanisms
underlying the dynamic processes associated with the cognitions, behaviors, and
a�ect observed during the interaction are not known, nor has anyone tried to
model them in real time. A goal in this area is to establish a set of key macro-level
patterns, derived during micro-social processes, that have predictive validity be-
yond the observed constituent codes. Its hoped that the relevant micro-social
features can predict either some proximal dyadic state or permit accurate pop-
ulation classi�cation. In the language of computer science, this area of inquiry
needs to �nd generating models of sequential latent processes, i.e., pro�les of
sequential movement across latent states with estimated probabilistic structures
(Dunson, 2006). Fortunately over the last decade the study of latent generating
processes has become a cornerstone of contemporary machine learning theory
(Teh & Jordan, 2010). With the advent of faster computers, and theoretical
advances in Bayesian methods, emphasis is now on discovering methods that
capture temporal clustering and feature extraction in sequential data.

At the forefront of this area is the family of nonlinear hierarchical Bayesian
techniques. For example, sequential and hierarchical Latent Dirichlet Allocation
methodology (Gershman & Blei, 2011) now permits investigators to partition
data into clusters (Teh et al., 2006) and sequence sensitive feature states (Emonet
et al.,2011). Likewise, renewed interest in the traditional Hidden Markov Model
(HMM) has resulted in several revised multi-state, hierarchical models that have
the ability to capture time-sensitive latent state transition processes (see e.g.,
in�nite HMM (Blei, Gri�ths, and Jordan, 2010); Hierarchical Dirichlet Process-
HMM (HDP-HMM), Teh & Jordan (2010)).

Similarly, until recently HMMs were primarily used as tools in voice recog-
nition (Rabiner, 1989) and later adopted for a diverse uses of other recognition
tasks, ranging from social dynamics (Gri�n, 2002) to hydrological time-series
(Kehagias, 2004). In the last half-decade, development of new HMMs has incor-
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porated a hierarchical nonparametric Bayesian approach; this adoption permits
a greater range of use with real, somewhat messy, data (Fox et al., 2008; John-
son & Willsky, 2012). Most notability has been the attempt to parameterize
the likelihood of state self-transitions (Fox et al., 2008); this, combined with the
use of a Hierarchical Dirichlet process to generate priors and leave unspeci�ed
the expected number of states, permits the building of explicit-duration semi-
Markov models. Such models are substantially more realistic of natural, dynamic
stochastic processes.

In this presentation we will provide an overview of our current methods
for modeling the dynamics of dyadic interaction and then show how the new
machine learning techniques generate more accurate models and consequently
more realistic simulations. We currently have two methods of simulating dyadic
interaction in married couples�an algorithm-based ABM and a particle �lter
(described below). Although both work reasonably well, neither fully captures
the dynamics of evolving social processes as well as we would like. Recently, we
developed a third method of generating a couple dynamics model using a Hier-
archical Dirichlet Process Hidden semi-Markov Model (HDP-HSMM) (Johnson
& Willsky, 2012).

1.1 Preliminary Work

Our previous analysis of dyadic sequences focused on two fronts: (1) using unsu-
pervised machine techniques - speci�cally, Hidden Markov Models - to extract
observable features; and (2) building agent-based models that generate plausi-
ble interaction sequences. In the former case, Gri�n (2002) used the data from
30 couples to develop a 10-state 4-symbol HMM that classi�ed distressed from
non-distressed couples with an accuracy rate of 91%; he found a decidedly dif-
ferent distribution in the observables for self-transitions and states transitions
among non-distressed couples�there was substantially greater mutual positive
a�ect during the middle phase of the sequence. Two aspects of this research are
noteworthy. First, the classi�cation rate of 91% is below expectation in a well
developed HMM, but this value is acceptable (especially in this social science
area) given the small sample size and low dimensional vector used to create the
data string. Second, although no substantive conclusions were forwarded, results
demonstrated that couple interactions were patterned and accurate learning and
classi�cation occurred without supervision.

In addition to using Hidden Markov Models to search for pattens within
sequences, we have built two functioning ABMs of dyadic interaction. Our �rst
attempt was an algorithm based model that simulated a�ect expression based on
transition matrices derived for observed interactions (Gri�n et al., 2004; Gri�n
& Li, 2012; see Figure 1).

Although the rule set (i.e., if/then statements) based model was simple and
generally showed �delity to the realized data, generated outcomes were incon-
sistent and often unwieldy. Next we built a simulation platform using a particle
�lter as the generating mechanism. A particle �lter (i.e., sequential Monte Carlo
(SMC)), is a model estimation technique based on simulation. It estimates the
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Fig. 1. User interface showing parameter sliderbars that modify interaction character-
istics and a generated couple a�ect trace.

sequence of hidden parameters based on the observed data. The model interface
is shown in Figure 2; sliderbars allow the user to vary relevant parameters of the
putative process. Using the particle �lter, we developed a data driven model that
allowed the viewer to examine how small changes in relationship quality shifted
the trajectory of the interaction. Whereas the initial ABM focused on expressed
a�ect, the particle �lter simulated verbal and nonverbal exchanges. This model il-
lustrates how the observable features of an evolving interaction vary in real-time
depending on each individual's self-report of relationship quality, aspirations,
and goals. A typical output is shown in Figure 3; as expected, with small di�er-
ences in the aforementioned parameters, each instantiation generates a di�erent,
yet probabilistically constrained, behavioral series. We learned several things
from this work: �rst, algorithms derived from extant data can generate complex
evolving processes that provide inconsistent facsimiles to realized data; and (2)
particle �lters provide a good method of generating plausible sequences but are
not intended to invoke theoretical opportunity for the investigator, they simply
generate a good trace; and (3) although HMMs are well developed mathemat-
ically, traditional use of the methodology requires the investigator to assume
time-invariant state distributions and a �xed, known number of states. We know
that in a dynamical system, by de�nition, time in state is the critical feature;
likewise, descriptions and models of di�erent systems require di�ering number
of states.
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Fig. 2. User interface showing parameter sliderbars that modify interaction character-
istics.

2 HDP-HSMM

The standard Hidden Markov Model (HMM; Rabiner, 1989) is an excellent gen-
eral method of discovering latent structures in sequential data (Gri�n, 2002),
as long as the assumed process is simple (e.g., the state durations were time
invariant or the number of states were known a priori). Fortunately, with in-
creased investigations of real-world complex datasets, the standard HMM has
been transformed over the last decade: computer scientists have created numer-
ous sequential analytic techniques that are sensitive to the nuances of evolving
latent structures (e.g., in�nite HMMs) akind to the type seen in micro-social
dynamics (Gershman & Blei, 2011). Among these is the Hierarchical Dirichlet
Process Hidden Markov Model (HDP-HMM; Teh et al., 2006). The hierarchical
Dirichlet process (HDP) models the dependence among groups through shar-
ing the same set of discrete parameters. Yet its assumption of exchangeability
make it inappropriate for sequential data; fortunately this restrictive assump-
tion spurred new models that are appropriate for time sensitive data (Blei &
La�erty, 2006; Dunson, 2006). For example, Fox, Willsky, and colleagues (2008)
were able to extend the standard HDP by introducing a method of parameteriz-
ing the self-transition bias, the state persistence problem, which in turn, allowed
them to develop a fully nonparametric HMM - e�ectively removing the need to
specify, a priori, the number of states associated with a system. This method,
termed the Sticky HDP-HMM, despite being a radical improvement, su�ered the
same duration distribution constraint as the standard HMM: state durations are
time-invariant.

Fortunately Johnson & Willsky (2012) quickly extended the work of Fox et
al. (2008) by combining semi-Markovian ideas with the Stickly HDP-HMM to
construct a general class of models that incorporated duration distributions. The
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Fig. 3. Model output showing a sex coupled sequence over 30 time units.

recent models are well described in the aforementioned references. Our work uses
the models developed by Johnson and Willksy. Our goal of extracting patterns
from sequential data is conceptually and quantitatively similar to their search
for structure in the real and synthetic data used in their paper. Where they
used multiple time-series for household appliance data we inserted husband and
wife sequence data. Likewise, our simulations are written in Python, as is their
publicly available code, thus it was easily modi�ed to �t our research questions,
output plots, and GUI.
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3 Methods

3.1 Sample

Recruitment Thirty married couples responded to newspaper advertisements
o�ering twenty-�ve dollars for participation in a study on marital communica-
tion. The initial sample was recruited from among married couples living in the
metropolitan Phoenix area. In the �rst wave, 40 participants (20 couples) were
recruited. One couple was dropped because of invalid data. Five of the remaining
19 couples reported marital distress. Because �ve couples are an insu�cient num-
ber for group comparison (e.g., distressed vs. nondistressed) and comprehensive
statistical analysis, the second recruitment e�ort speci�cally targeted distressed
couples. The modi�ed newspaper advertisement asked couples to participate in
the study if they felt their marriages were distressed. Of the 11 married cou-
ples recruited in the second wave, nine marriages quali�ed as distressed and two
as nondistressed. In sum, 14 distressed and 16 nondistressed married couples
participated in the study.

3.2 Data Collection

Upon arrival at the Marital Interaction Lab, couples were greeted by the lab
assistant and then seated in a room constructed to resemble a small living area
containing prints, curtains, plants, and two chairs in the center of the room. Two
unobtrusive, partially concealed, remotely controlled cameras were mounted on
the walls at head level behind each chair. All audiovisual and mixing equip-
ment was controlled from a room adjacent to the interaction. Video signals were
combined producing a split-screen image; audio was obtained from lavaliere mi-
crophones worn by each spouse.

3.3 Problem Solving Task

After completing informed consent forms, couples were given the Areas of Dis-
agreement questionnaire (i.e., standard Strodbeck's revealed di�erences task).
Each marital partner selected and ranked a list of potential disagreement areas
typically associated with marital relationships, according to how much they dis-
agreed and for how long they had disagreed. Couples were then instructed on
how to use the A�ect Generation computers in the lab (see below). After they
became familiar with the procedure, they returned to their chairs. With the lab
assistant's help, the couple selected the three most common topics from the list
of problem areas and agreed to discuss them. The lab assistant then instructed
the couple to engage in a 12-minute discussion and attempt to resolve the issues.
This is a common task used to evoke interaction in married dyads. Controlling
the audio and video equipment from the adjacent room, the lab equipment op-
erator recorded the couples' conversation.



8 Unsupervised Learning of Dyadic Processes

3.4 A�ect Generation

After completing the conversation, lab assistants escorted marital partners to
their respective seats at the A�ect Generation computers. The lab assistant left
the room and each spouse then simultaneously reviewed and rated his or her
own a�ect while watching a videotaped split-screen playback of the interaction.
Separated by a partition and wearing audio headsets, husbands and wives could
not see or hear their spouse while reviewing the videotaped interaction. A study
using similar methodology for recalled self-report of a�ect reported validity for
the procedure with respect to observational coding.

The videotape was played back through a specially con�gured microcomputer
using software that overlays a 9-level, color-coded, vertical bar on each color
video monitor. This overlay was positioned beside the face on the monitor of the
spouse reviewing the tape. The a�ect rating ranges from extreme negative (red),
through neutral (gray) to extreme positive (blue), and is controlled by a personal
computer mouse. Extreme negative is at the monitor bottom, neutral is at mid-
monitor, and extreme positive is at the top of the monitor. The width of the bar
varies at each a�ect level (5 pixels increments) corresponding to the intensity
of the a�ect, neutral being the thinnest. The widest a�ect level is 28 pixels
wide (1.5 cm). As the reviewer moves the mouse, the a�ect bar is highlighted
corresponding to the degree and direction of the a�ect. For example, as the
individual's a�ect rating becomes more negative (positive), the mouse is pulled
back (pushed forward) and the appropriate a�ect level becomes highlighted, and
as the highlighted area moves further from neutral, the width of the level expands
to re�ect intensity. During the review of the tape, and viewing only his or her own
rating, each individual is asked to move the mouse to re�ect a�ective experience
during the interaction (i.e., "How were you feeling at each moment?") In this
context, a�ect refers to the speaker's assessment of an internal reference to the
meaning of "feeling" (i.e., over a continuum from positive to negative). Software
records the location of the bar position every second, providing a continuous
measure of a�ect throughout the interaction. Average ratings are referenced to
a reduced 9-point scale: 8 = extreme negative, 4 = neutral, and 0 = extreme
positive.

In this method of a�ect retrieval, each a�ect has a subjective reference that
is unique to the rater, within the context of the interaction, given the dyad's
history. For each individual there is only an internal template referencing a
positive, a neutral, or a negative a�ect state. In e�ect, an internal state that is
pleasant to one individual may be only neutral to another. Moreover, because
it is self-report, it could be argued that such a recall procedure provides a good
proxy of the true a�ect state, and requires less inference than other, outsider
perspective data collection procedures (see Gri�n, 2002; Gri�n et al., 2004 for
complete details).
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4 Results

Initially, the couples were sorted by reported marital satisfaction level and placed
into 3 categories: High, Medium, and Low. Each category contained 10 couples.
As expected those couples placed in the middle group straddled the accepted
cut-o� score that is usually used to distinguish distressed from non-distressed
couples. We thought that it was more informative to generate results across a
continuum of satisfaction levels rather than to simply break the couples into the
usual distressed-nondistressed groups.

Table 1. High Satisfaction: Group 1. This table shows all inferred
states along with their expected durations plus the means values of

the male (D1) and female (D2) a�ect ratings.

State Duration: λ D1:µ D2:µ D1:Var D2:Var Cov

0 12.625 4.0 0.0 0.530 0.008 0.006
1 10.493 4.0 4.0 0.387 0.303 0.159
2 14.678 0.0 4.0 0.003 2.626 0.009
3 8.783 2.0 0.0 0.008 0.006 0.000
4 5.868 1.0 0.0 0.008 0.008 -0.000
5 38.263 6.0 7.0 1.129 0.331 0.157
6 10.752 2.0 2.0 0.008 0.010 0.003
7 6.809 3.0 5.0 0.012 0.938 0.002
8 30.682 7.0 2.0 0.164 0.899 0.013
9 9.210 4.0 3.0 0.424 0.284 0.056
10 18.457 1.0 3.0 0.003 1.368 0.004
11 12.932 3.0 3.0 0.020 0.224 0.004
12 18.815 7.0 5.0 0.989 0.970 -0.216
13 19.900 0.0 1.0 0.006 0.008 0.000
14 8.704 2.0 4.0 0.006 1.544 -0.001
15 11.732 2.0 7.0 0.311 0.161 0.080
16 0.744 3.0 5.0 3.548 2.716 1.709
17 15.586 2.0 1.0 0.277 0.003 0.004
18 17.030 0.0 0.0 0.006 0.006 -0.000
19 5.898 4.0 1.0 0.862 0.009 0.006

The analysis began by running the HDP-HSMM on each satisfaction group as
a collective whole; that is, data were added, couple-by-couple, into a common
pool so that a general model could be generated for the whole of the group
at each category level. Data consisted of male a�ect rating and female a�ect
rating. Next, at the group level, a general system structure emerged in the form
of state values for dimension 1 (i.e., male) and dimension 2 (i.e., female), along
with variance and covariance structure; in addition, the model generates the
expected duration for each derived state (note: greater detail is provided below).
Next, each couple's realized data were used as observation data and the group
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model was asked to generate a data sequence that corresponded with the extant
data using the states and durations available to it. As analyses progressed, it
was apparent that within group variance made it di�cult to qualitatively and
quantitatively characterize couple behavior by group satisfaction level.

Consequently we then took each couple's data sequences and generated a
sequential singular value decomposition (SVD) time-series, and applied a clus-
tering analysis (Ward's criteria) on these within-group time-series. Using these
results, we formed two homogeneous subgroups within each level of distress. All
analyses were repeated at the level of subgroups; the High satisfaction group
had subgroups with n = 7 and 3, Medium was 6 and 4, and Low was 6 and
4. Although additional information about parameter choices will be given at
the presentation, it should be noted that the number of maximum states was
20; although analyses were run with much higher values, the number of states
needed to capture the dynamics of the system across all groups averaged about
13�17 states. All the analyses presented here are based on resampling of 10,000;
that is, to generate a plausible distribution of values to estimate a sequence,
the model makes 10,000 pulls from a distribution that is consistent with the
estimated parameters values.

4.1 Example Output

Our analyses generate numerous indices characterizing the dyadic processes asso-
ciated with each group and subgroup, these include: (1) a system level overview
of the inferred states including their expected durations along with the state
variance/covariance structure. Table 1 shows the output for high satisfaction
couples, group 1; (2) the model also generates a generic sequence consistent with
the values of the inferred system structure in addition to a subject-by-subject
output showing the observation distributions, a plausible state by duration se-
quence, distributions of durations, and an inferred multi-dimensional a�ect trace
(i.e., male, female). Figure 4 illustrates these features stacked vertically by sub-
ject; and (3) �nally, the model generates a state transition matrix along with
an emission matrix ([state,observable] joint matrix). These two matrices provide
the probabilistic structure needed to simulate sequential observable behavior
expected in a system. Aside from their computational value, they also provide
visual information; for example, Figure 5 shows two generated transition matri-
ces for high martial satisfaction couples, subgroup 1 is shown on the left and
subgroup 2 is shown on the right. Although both re�ect a 20 state system, as
modeled, state composition is unique to each group (e.g., Table 1 shows subgroup
1), nonetheless it is easy to see that in subgroup 1, state 16 acts as an attractor
within the system whereas subgroup 2 shows a lot of variability in their move-
ment across states. Again, note that both subgroups are in the same satisfaction
group and yet as the clustering analyses suggested, and subsequently veri�ed
by the model, within group di�erences must be accounted for when simulating
these types of processes.
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Fig. 4. High Satisfaction: Group 2; features shown are observation distributions, in-
ferred sequence with duration estimate, duration distributions, and plausible couple
a�ect trace. Cooler colors indicate more positive a�ect.

Fig. 5. Transition matrices for high satisfaction subgroup 1 (left) vs. subgroup 2; di-
agonal self-transitions have been removed to visually enhance cross state transitions
values.
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5 Conclusion

We developed a method of modeling complex dyadic processes using state-of-the-
art unsupervised learning techniques. The HDP-HSMM provides all the informa-
tion needed to generate data driven complex, yet realistic, simulations of dyadic
and small group dynamics. It constructs states, transitions matrices, emission
matrices, and expected durations�all the ingredients needed to generate real-
ism in simulations. We will demonstrate how this can be done using married
couples who report a wide range of satisfaction levels. E�ectively showing how
contemporary machine learning techniques can be used by computational social
scientists to generate complex social dynamics.
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A ODD

A.1 Overview: Purpose

We are modeling dyadic processes, consisting of behavior and a�ect, in married
couples. This is not an simulation - instead it is a method of modeling the
assumed process. With this model we generate the parameter values that can
be used in an ABM or, depending on the context and need, it is su�cient as a
model of the micro-social dynamics. It is well established that dyads - either
e.g., married couples, or mother-child pairings, interact in ways that convey the
quality of the relationship. The methods used in this model are new, untested,
and somewhat di�cult to understand but they have the potential to provide
substantial insight into latent generating mechanisms associated marital quality.
If successfully implemented, the methods provide:

� procedures for generating simulation parameters,

� possible ways to discover algorithms associated with marital interaction,

� a step-by-step procedure for discovering behavioral and a�ect motifs in
dyadic processes.

A.2 Overview: Entities

With the framework of this model there are, I think, 3 entities:

� the couple: male, female

� the laboratory where the interaction occurs

� the problem solving task used by the couple that generates the interaction

A.3 Overview: State Variables

There are two:

� Behavior: verbal, nonverbal

� A�ect: extreme positive to extreme negative

A.4 Overview: Scale

Realized data and the model are based on 12-15 minute interactions; this is a
standard time frame for these data collection episodes
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A.5 Overview: Process

Couples are invited to a laboratory to participate in a research project. They
are asked to converse about problems in the relationship. The conversation is
recorded; behaviors are coded by external observers, and a�ect is generated by
each member of the couple during a review session. These data are used in the
model. In this presentation, we used the male and female a�ect sequence, 720
data points, as dimension 1 and dimension 2, respectively. These data are a
2-dimensional representation of the system, from which patterns are extracted
using the HDP-HsMM methods.

A.6 Design Concepts:

This is a method of generating parameter values associated with a model of
micro-social dynamics and not a way of simulating those dynamics, at least
not in the traditional sense. Consequently, many of the sub-categories within
this section of not directly applicable. However, we envision the values being
generated within a typical run as being plug-in ready for a simulation. Thus
there are a couple of method features that should be noted.

The objective is to identify interaction patterns that are associated with
marital quality. Speci�c quantitative output enable us to do that; they are:

� State identi�cation (including variance and covariance structures)
� State transition matrices
� Emission matrices (state, observable joint matrix)
� Expected duration per state

From these we can use contemporary data analytic or visualization techniques
to discover motifs that discriminate across marital satisfaction levels.

A.7 Details:

Given that this is a modeling method and not a simulation, the subcomponents
of this section of not applicable.


