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ABSTRACT 

Coevolution is a technique that not only enables simulations to represent the 

formation of social structure, but also facilitates their capability to emulate the 

processes of iterative feedback underlying social data.  With coevolution, 

simulations can be validated at a general level and automatically applied to specific 

scenarios, recreating the dissipative structure of real world social institutions from 

data alone.  Examples of “seeding” coevolutionary systems with data are given, and 

techniques for deriving the causal processes of a system from a similar system are 

presented.  Experimental results illustrate the significant advantage of using data 

absorption techniques to emulate the system that underlies correlative data. 
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1 INTRODUCTION 

This paper presents a technique for mimicking a social system with a simulation 

when that system is not fully specified by the program and the data, called data 

absorption.  It is a technique for filling in what is not there, not through 

extrapolation or other statistically based techniques, but by what makes sense to the 

forming system, according to the motivations of individual agents.  Because it goes 

through motivation, the data absorption technique computes from first principles, 

explaining through process as opposed to describing statistically.  Scientifically 

valid analysis requires explanation:  in order to test policy on a social system you 

first must represent the causal processes of a system, and only once you have the 

basic causal processes correct can you test new policies that the system has not been 

exposed to.  Statistical description and extrapolation cannot test the effects of new 

policies because it does not effectively embody causation.   In data absorption, the 

motivations that caused the correlations in the data are captured, deriving cause 

from correlation.   

 

The way that computational social science typically addresses causation is with 

a complete model of causal process: input data is fed through these processes, rather 

like a physics-based model.  However, there is a fundamental difference between 

computational social science and physics:  in physics we always know the process 

ahead of time, because of universal law.  However, in social science, although 

general laws may be applicable,  the exact processes and motivations behind them 

may change from scenario to scenario.  Therefore a new system must be tailored to 

every individual case.  However, if this is done by hand, then we no longer have a 

way to validate the simulation before the simulation is run on a particular scenario.  

Data Absorption facilitates validation by simulating only general social science 

concepts and allowing the data to fill in the details of the process.  Validation can 

occur by tests that separate the testing set and the training set with no human in the 

loop to invalidate the technique.  Automating the representation of details of process 

is necessary before simulation can be applied to the bigdata of the internet in a 

scalable manner.   

 

Additionally, data absorption helps to ensure that the data is relevant and 

applicable to the processes in social simulations.  There is a gap in computational 

social science simulations between theory-centric simulations, that find emergent 

patterns computed from lower level rules;  and data-centric simulations, that 

represent the  details of data in real world scenarios.  Theory-centric simulations 

capable of emergence show proof of principle of general concepts, while the data-

centric simulations tend not to form emergent patterns.  Policy testing, however, 

needs both the theory-centric simulation’s computation from assumptions for valid 

analysis, and the data-centric simulation’s close representations to an existing 

scenario.  The reason for the gap is the recognition that dissipative structure 

emerges from the processes of the simulation, and that the validity of the pursuit of 

computational social science depends on the lack of obviousness that the upper level 

emergent pattern would form from the lower level rules, lower level rules which in 

combination should be nonlinear and more than the sum of their parts.  When a 



scientist simulates from first principles, he loses control of the outcome, and that is 

how it should be for valid analysis, because to control the outcome is to put the 

answer to the question in the question, to “rig” and to lose objectivity.  Social 

simulation is simulation of possible worlds, but to do policy analysis the scientist 

must emerge the details of this particular world, using some technique other than 

running simulations until the details of a real world scenario emerge by sheer 

coincidence.  Data absorption can help find the lower level patterns that caused the 

data so that they emerge by the same processes in the real world to be simulated. 

  

 

2 COEVOLUTION 
 

To know how to mimic a system with incomplete data we look to complex 

adaptive systems in nature that mimic other systems.  One place to look is the way a 

small child learns language.  Cognitive scientists note that there is very little explicit 

correction of the child’s language.  Somehow the models in the child’s head comes 

to mimic his parents and teachers, without full explication of the underlying model.  

We are trying to make social simulation do the same thing: using an incomplete set 

of correlative data fill in the processes that make sense.   

 

Some natural language processing (nlp) methodologies mimic this process.  One 

is the author’s nlp program, Indra, from which ontologies emerge from parsed 

freetext.  Indra uses a coevolutionary technique to fill in an ontology when only 

partial information is known.  Ontologies emerge from Indra through a process of 

“seeding.”  Indra uses actor-action-object triplets in text to categorize the actors 

according to the actions they perform, simultaneously categorizing actions 

according to the actors that perform them.  The categories formed are then treated as 

new actors and actions.  Because of the feedback between the categorization of 

actors and the categorization of actors, only a few exemplars in the categories are 

needed to form an ontology of actors and actions, an ontology which can be used to 

find new individuals that belong to a category.  If we “seed” a developing Indra 

ontology with examples of individuals, such as Osama bin Laden and Sadaam 

Hussein,  Indra will find actions these individuals have in common, use these 

actions to find other individuals of the same type, and then use the new set of 

individuals to expand upon the common actions, in iterative feedback [1]. 

   

Another place in nature to look to find the mimicking of the processes of a 

system is in examples of coevolution in natural ecosystems.  Coevolution works 

similarly to Indra’s emulation of language learning, in that there is an iterative 

feedback.  For example, if in the real world we were to place the predators of one 

ecosystem into another, the prey of the ecosystem would have to adapt to the new 

predator, say to run faster.  Then of course, the predators already existing in the 

ecosystem would have to adapt to their prey by running faster as well.  In this sense, 

the ecosystem is “seeded” with a species from another system, which causes the 

ecosystem to take on many more traits of the ecosystem that the species is from, 



than the species itself has.  An ecosystem may be thought of a house of mirrors, in 

that the individual species contain the whole as well. 

 

Coevolutionary simulations mimic seeding in natural ecosystems.  For example, 

the author’s Symbolic Interactionist Simulation of Trade and Emergent Roles 

(SISTER) uses coevolutionary pressure to impart culture to its members.  Each 

agent in SISTER has its own autonomous genetic algorithm, that tells the agent its 

plans to trade goods, as well as a tag to display that communicates the agent’s 

desired trades to the other agents.  The tag comes to have meaning in terms of trade 

behavior by this process:  Once an agent develops a corresponding trade plan with 

another agent and finds the agent by seeking the tag, as long as the trade is good for 

both agents, they will attempt to make the trade again.  However, when they repeat 

the trade, they seek the tag again rather than the individual agent. The tag allows 

other agents to engage in the same trade.  Because trade is good for agents, the 

agent seeking the tag puts selective pressure on all the agents to have a 

corresponding tag, a corresponding trade plan, and the goods to trade.  Other agents 

respond to this pressure, get in on the trade, and start wearing the tag to indicate that 

they want to trade  [2].   

 

A tag can also mean the recipe for how to make goods: for example, if an agent 

combines several goods together, resells the composite good, and displays a tag to 

sell it; then all the agents which want to buy the composite good and all the agents 

that want to sell the parts that make up the composite good will learn the tag.  Then, 

if a new agent is introduced in the simulation and it displays the tag, the new agent 

will receive coevolutionary selective pressure from the sellers of the parts of the 

composite good and the buyers of the good to make the composite good correctly.  

In SISTER, the system of trade is recreated in the individual new members, and 

even survives the deaths of all the individual members as long as there are as many 

births and they do not die at the same time [3].   

 

This same coevolutionary pressure may be used to help the system of a data-

centric simulation come to take on the traits of the real world system that made the 

data.  SISTER is a theory-centric simulation as opposed to the data-centric 

simulations needed for policy analysis, but the same principles still apply.  Nexus is 

a data-centric simulation that uses data adaptation to mimic the vicious and virtuous 

cycles of behavior that cause the real world data.   However, instead of single agents 

learning an existing system as in SISTER,  all Nexus  agents receive coevolutionary 

pressure to learn the system at once.   

  

Nexus is coevolutionary in that agents together develop corresponding plans, 

each of them having their own evolutionary algorithm with which to learn behaviors 

that increase their individual well being.  Any set of corresponding behaviors that is 

expected by agents is a social institution, and in the presented example the social 

institution under study is corruption.  Corruption is a social vicious cycle that people 

do not want to be involved with, but feel they must in order to participate in society:  

it is social because it involves expectations of other’s behaviors, for example, one 

would not offer a bribe if they did not expect the bribe to be accepted.   



Nexus Algorithm 

 Nexus incorporates a co-evolutionary genetic algorithm to model a dynamic 

role-based network.  Nexus has been part of several important studies of Irregular 

Warfare. In the OSD Africa Study, Nexus represented corruption, and in the US 

Army TRAC Tactical Wargame (TWG), Nexus represented dynamic role networks 

of key leaders and terrorists from which emanated intelligence messages [4],[5],[6].   

 

Every Nexus agent has a Bayesian Optimization Algorithm (BOA)  that agents 

utilize to determine behavioral strategies.    In the Africa Study, strategies included 

bribing and stealing behaviors.  Agents also use the BOA and preferred attributes to 

determine network partners.  

  

A Nexus iteration starts with each agent choosing network partners from a list of 

qualified candidates.  In the Africa Scenario,analysts modeled 65 roles in three 

networks: kin, bureaucratic, and trade networks.  For example, a young single male 

may qualify as a husband and choose a wife according to preferred attributes, such 

as gender, age, ethnicity, etc.  Relationship attrition may occur at every cycle.    

Networks, behaviors, roles, and attributes are inputs to a Nexus scenario.  Analysts 

determine whether attributes are subject to learning or not.   

 

Agents behave according to role relations, and this behavior may be witnessed 

and revealed to other agents depending on role relations. For example, in the TWG 

scenario of Afghanistan, a terrorist might drink tea with his cousin, performing a 

behavior that may be observed by a store owner.  The store owner may share this 

information with a human intelligence (HUMINT) agent, leading to the inference 

that the men are cousins.   

 

In the Africa Scenario, a father might buy food for his child and give a bribe at 

the same time because of a food shortage.  In Nexus, agents conserve money.  

Money flows through accounts, and corrupt actions are defined as inappropriate 

transfers from one account to another.  Inappropriate transfers include action such 

as bribing an employer for hiring through a kick back, or police stealing money 

from citizens at a checkpoint.   

 

Results from bribes and stealing are implemented in rules rather than hard 

coded.  For instance, bribe results may differ depending on whether the bribe was 

witnessed or not, and whether the witness was friendly to briber or not.   Agents 

gain utility as a result of behaviors that involve money transfers. The utility occurs 

upon direct consumption of a desired commodity.  For example, in the Africa 

Scenario, utility occurs when the maternal grandmother of a matri-local tribesman 

eats fruit she bought at the market.  As scenario input, analysts determine behaviors 

and roles that generate utility depending on the culture.  Utility for the time that a 

strategy is in effect is the “fitness function”, the equation by which a strategy is 

evaluated, for the BOA.  

 



The BOA tests 20 chromosomes (evaluation factors) regarding bribing, stealing, 

accepting bribes, accepting or rejecting network partners who bribe and steal every 

20 days.  An example of a chromosome is the number of times bribes were accepted 

or declined.  Starting conditions for behavior frequency are based on demographics 

of the targeted real-world location.  For instance, relatively corrupt societies would 

initially engage in greater amounts of bribing and stealing than relatively non-

corrupt societies.  Utility over the 20-day test is based on the amount of utility 

agents incurred during their role transactions.  The utility is the fitness of the 

chromosome. Nexus agents test a single strategy for 20 days (a parameter of the 

simulation), and then rate the strategy in terms of utility and accomplished goals.  

The agent will then test a second strategy for the next 20 days, and then rate that 

strategy.  This pattern of testing and rating strategies continues for 20 different 

strategies (another parameter of the simulation), each tested for 20 days, 

culminating after 20 x 20 = 400 days.   

 

The BOA captures the 10 best strategies for future use and discards the 10 worst 

strategies.  The number of strategies for future use and the number of strategies 

discarded are simulation parameters set by the analyst.  The BOA utilizes the 10 

best strategies to reformulate 10 additional strategies for further testing by the 

agent.  The result is 20 randomly mixed strategies being tested by the agent starting 

on day 401 that include the 10 best strategies from days 1-400 and 10 additional 

strategies that are statistically similar to the 10 best strategies. 

   

Representing behaviors as a function of role relations captures the processes of 

sociology.  Nexus models change in role relations and behaviors well because it 

bases role changes on utility.  Coevolving BOAs seek individual utility, forming 

social structures.  For example, bribing is social because in order to offer a bribe, 

you must believe that the bribe will be accepted, or at least that the person bribed 

will not inform authorities.  Therefore, agents must separately develop 

corresponding plans to bribe and expect bribes as part of the social environment.  

Modeling an emergent social institution such as bribing is akin to Adam Smith’s 

invisible hand concept where markets self-correct to accommodate consumers.  

Nexus models IW concepts well because Nexus allows analysts to test courses of 

action against a natural system.  For instance, an analyst can test whether 

interventions such as transparency programs replete with associated penalties 

influence corrupt practices or not.   Additionally, natural forces at work such as 

consumer preference prevent stores from stealing from customers, else the 

customers will not return.   

 

 Nexus utilizes Bayesian networks to describe measurable phenomenon based on 

demographic attributes from the country of interest, such as the chance of bribing 

for a particular tribe in a particular part of a country.  The Bayesian network 

captures relationships between agent attributes and behaviors in the real world. 

 

The BOA that each agent utilizes  is unique such that the BOA can proceed from 

any point in reality, and evolves from that point, unlike most evolutionary 

algorithms.  Because the BOA is coevolutionary, agents expect each other to behave 



in accordance to their roles that are input from real-world data, and apply selective 

pressure on each other according to their expectations.  For example, if agents 

expect Mongos from Congo to bribe, then they offer bribes to this class of agents, 

placing selective pressure on Mongos to maintain the expectation.  However, the 

agents within a class generally converge on one strategy or another according to 

their utility.  For example, if agents believed that 60% of Mongos from Congo 

accept bribes and 40 % do not, then Nexus starts off with 100 % of Mongo agents 

accepting bribes 60% of the time and not accepting bribes 40% of the time.  

However, as the simulation reaches equilibrium after six years, 60% of Mongo 

agents accept bribes 100% of the time, and 40% of Mongo agents accept bribes 

100% of the time.  They feed their utility by maintaining public expectations, and 

also by developing behaviors that are individually rewarded by their relations. 

 

 

3 Data Absorption in Nexus 
  

To absorb data, every agent in Nexus is initialized with tendencies to behave in 

a way that real world people do, given their demographic characteristics.  However 

the agents are not required to behave this way, rather they are just “hints” at how to 

behave.  They are free to evolve any path that benefits them, however they do 

experiment with the behaviors that exist in a real world system to test if they 

beneficial.  It is not a sure-fire thing that the behaviors of their demographically 

similar counterparts in the real world will benefit them:  they still have to develop 

similar networked relationships as their counterparts for the behaviors to benefit 

them.  However, just experimenting with the same behavior as their counterparts 

make it more likely that they will develop those relationships.  For example, a 

government service provider agent experimenting in accepting bribes may be more 

likely to provide services to a citizen agent that offered bribes, if the bribe was in 

both their benefit.  It would be in the citizen’s benefit, for example, if there was a 

shortage of the service so that the bribe “corrects the price” of the service.  In 

Nexus, runs with shortages result in an increase of bribing behavior, and other 

processes in the complex system could cause a shortage endogenously.   Or it could 

be in the citizen’s benefit to bribe if all service providers demanded a bribe.  Rather 

than force behavior, we give agents options of behavior, and let them choose based 

on utility.  To maintain realism, every agent is given the distribution of behaviors 

expected for its demographic group and initially tries all of them in proportion.  For 

example, if female members of the Mongo tribe accept bribes 60 percent of the 

time, then every female of the Mongo tribe starts out experimenting with accepting 

bribes 60 percent of the time and not accepting them 40 percent of the time.  

Because everyone is offering everyone else offers to bribe at the rate expected by 

the demographic characteristics of the population, they experience the same 

motivational space of the original system, and all they have to do is respond to 

incentives through the networks that they are able to develop, given the resources 

available to them.   

 

This research indicates that when the outer behaviors of a system are fed to the 

system, they pick up the inner choices that cause them.  The outer behaviors provide 



gradient for the corresponding plans in the society to form, while at the same time, 

they only form if they are actually the best choice for the individuals when they are 

tested.  As the networks of the agents converge, individual agents typically settle on 

only one pattern of behavior.  If the other facts about the simulation limit the 

resources so that only some may succeed in being part of the network of utility 

increasing corresponding behaviors, then only a subset of individuals of a 

demographic groups come to have the behaviors.  In the above example, toward the 

end of the simulation, resource constraints would cause 60 percent of female 

mongos  to bribe 100 percent of the time with their established connections, while 

40 percent of female mongos would not be able to develop the connects to offer 

bribes.  The research indicates that the data absorption technique facilitates the 

system reaching a steady state similar to the system that it emulates, so that the 

proportion of agents participating in behaviors expected of demographic groups 

remains constant throughout the simulation, and is consistent across simulations for 

the demographic groups as well.  Importantly, the motivations of agents towards the 

end of the simulation in the network they develop with available resources causes 

the proportions, so that the emulated system is ready for the testing of policy when 

behaviors have converged to the steady state.  Figure 1 illustrates the steady state of 

the agents of a simulation experiment that mimics the real world system through 

data absorption. 

Gender Tribe Location Age  Sector Residence Education 

Behaviors 
developed in 
R1 

Behaviors 
developed in 
R10 

Female Azande Region4 Under15 Industry Matrilocal Income2 
bribeforservice
s 

bribe for 
services 

Female Azande Region4 WorkingAge Government Matrilocal Income6 
accept bribe 
for services 

accept bribe for 
services 

Female Azande Region4 WorkingAge Industry Matrilocal Income4 none none 

Female Foreign Region4 Under15 Government Patrilocal Income7 

bribe for 
services and 
accept bribe 
for services 

bribe for 
services and 
accept bribe for 
services 

Female Kongo Region1 WorkingAge Industry Patrilocal Income3 
bribe for 
services   

bribe for 
services   

Female Luba Region3 WorkingAge Industry Matrilocal Income3 none 
bribe for 
services 

Female Luba Region3 WorkingAge Industry Patrilocal Income4 none 
bribe for 
services 

Female Mongo Region2 WorkingAge Industry Patrilocal Income3 

bribe 
employer and 
bribe for 
services bribe employer 

Female Other Region1 Under15 Government Matrilocal Income7 
bribe for 
services 

bribe for 
services 

Female Other Region1 Under15 Industry Matrilocal Income4 
bribe for 
services 

bribe for 
services 

Female Other Region1 WorkingAge Industry Matrilocal Income2 
bribe for 
services 

bribe for 
services 

Female Other Region3 Under15 Industry Patrilocal Income5 
bribe for 
services 

bribe for 
services 

Female Other Region3 WorkingAge Government Patrilocal Income9 none 
bribe for 
services 

Female Other Region4 WorkingAge Government Patrilocal Income5 bribe for bribe for 



services and 
accept bribe 
for services 

services and 
accept bribe for 
services 

Female Other Region4 WorkingAge Industry Matrilocal Income4 
bribe for 
services 

bribe for 
services 

Male Azande Region2 Under15 Government Matrilocal Income5 

bribe for 
services and 
accept bribe 
for services 

bribe for 
services and 
accept bribe for 
services 

Male Azande Region4 Under15 Industry Matrilocal Income2 
bribe for 
services 

bribe for 
services 

Male Azande Region4 WorkingAge Industry Matrilocal Income3 
bribe for 
services 

bribe for 
services 

Male Foreign Region3 WorkingAge Industry Neolocal Income2 
bribe for 
services 

bribe for 
services 

Male Foreign Region4 WorkingAge Industry Neolocal Income3 
bribe for 
services 

bribe for 
services 

Male Luba Region3 WorkingAge Government Patrilocal Income6 

bribe for 
services and 
accept bribe 
for services 

bribe for 
services and 
accept bribe for 
services 

Male Luba Region3 WorkingAge Industry Patrilocal Income3 
bribe for 
services 

bribe for 
services 

Male Mongo Region2 Under15 Industry Patrilocal Income3 
bribe for 
services 

bribe for 
services 

Male Other Region1 Under15 Industry Matrilocal Income2 
bribe for 
services 

bribe for 
services 

Male Other Region1 WorkingAge Industry Patrilocal Income3 
bribe for 
services 

accept bribe 
employer 

Male Other Region2 Under15 Government Patrilocal Income7 
bribe for 
services 

bribe for 
services 

Male Other Region2 WorkingAge Government Patrilocal Income6 

bribe 
employer, 
accept bribe 
employer, 
bribe for 
services and 
accept bribe 
for services 

bribe for 
services accept 
bribe for 
services 

Male Other Region2 WorkingAge Industry Patrilocal Income4 
bribe for 
services 

bribe for 
services 

Male Other Region3 WorkingAge Industry Matrilocal Income2 none 
bribe for 
services 

 
Figure 1.  Individual agent demographic characteristics kept the same between 

two runs, while behaviors are learned.  Two runs, R1 and R10, using the data 

absorption technique illustrate remarkable consistency in the development of 

corresponding behaviors across runs.  This consistency is behind the statistic 

that the data absorption technique using the output simulation data is more 

consistent in deriving the real world simulation state then the data directly 

from the real world itself.  

 

4 NEXUS EXPERIMENT 

In this experiment, agents are initialized with the desired behaviors of the real 

world system to be simulated, in proportion to their demography, before they have a 

chance to develop the networks that support the behaviors.  Two thirds of the runs 



gradually develop networks that support the behaviors through the motivations of 

the agents, and one third never do.  It is hypothesized that the motivations captured 

do not tell the whole story, and so stochastically the steady state of the real world 

system was out of reach one third of the time.  Note that this behavior is not 

consistent enough to test a policy change by holding all else the same.  However, 

we can take the output from one of group of  two thirds of simulation results that do 

in fact emulate the real world processes, and feed that back as input to another run 

of Nexus.  This data is still partial, outwardly measurable data, as opposed to a 

check point restart type of process, in order to give the stochastic agents the option 

to develop other outcomes and in order to more closely cover the space of possible 

outcomes than is possible with checkpoint restart.  When the new simulation runs 

are seeded with the output behaviors of the old, the desired real world processes 

develop significantly more consistently, enabling policy analysis that holds all else 

the same.   

 

Figure 2 shows that the behavior from the data absorption run using output from 

another simulation is more consistent than the run directly using data directly from 

the country.  Figure 3 and figure 4 show the differences between tests of policy on 

both the runs using country data and the runs using the data output from the country 

data simulations.  These runs illustrate how not “keeping all else the same” by using 

the data absorption technique can skew the results of a test of policy, leading 

analysts to erroneous conclusions.  In the example, the test of policy is the 

application of stiffer penalties for corruption and then removing that penalty three 

years after introducing it.  In the runs with data straight from the real world country 

(figure 3), the policy is a failure.  Without the penalty, the system seems to naturally 

decrease in corruption about a third of the time, and with the penalty, it only 

decreases in corruption about sixth of the time. However, the test was performed 

with the assumption that the simulated country started out with the dissipative 

structures of corruption in the real world, which was not the case in the runs using 

data from the country without the data absorption technique.   The test is more 

accurately performed when the simulation is initialized to the dissipative structures 

in the real world through the data absorption technique.   

 

In the data absorption runs (figure 4), the penalty resulted in fewer service bribes 

even after the removal of the penalty, leading the system to a new steady state, one 

fourth of the time.  If the penalty was never applied, the society would improve on 

its own a tenth of a time.  This indicates that the policy of stiffer penalties for 

corruption was somewhat of a success in a corrupt country. This comparison shows 

the improvement of the accuracy and validity of policy test analysis with the data 

absorption technique.  However, note that the result does not advocate government 

intervention in the cases where the country does not start out with a significant level 

of corruption:  according to the research results, in these cases, the government 

intervention could cause the country to actually become corrupt, perhaps by 

suppressing pre-existing natural limits to corruption. 

 

 

 



Service Bribes    

 Country Data  Data From Run  
Like Original, 
Stayed Higher 19 20  
Unlike Original, 
Decreased 10 2  

  
chi squared 
test 

0.00783
2 

Figure 2.  A comparison of 29 runs directly from country demographic data 

with 22 runs come from the output of the run of one of the 19 simulations that, 

like the original real world data, retained the dissipative structures of the social 

institution of bribes for government services.  This social institution was 

maintained with consistency across runs, at the p=0.007 level, and was 

maintained by virtue of the motivations of the agents toward their personal 

utility. 

 

Service Bribes    

 
without 
treatment with treatment  

Stayed High 19 17  

Decreased 10 3  

  chi squared test 0.0870244 

Figure 3.  Service behavior under penalty applied then removed in country 

data runs.  At the p= 0.08 level, which may in some cases be interpreted as a 

significant result, the policy appears to be a failure.  However, the run was not 

consistently initialized with the dissipative structures of corruption that existed 

in the country.  The data absorption technique is needed to do that. 

 

Service Bribes    

 
without 
treatment with treatment  

Stayed High 20 21  

Decreased 2 7  

  chi squared test 0.0145238 

Figure 4.  Service behavior under penalty applied then removed in data 

absorption runs.  At the p= 0.01 level, a strongly significant result, the policy 

was a success given that the country started out in a corrupt state, by virtue of 

the data absorption technique. 

   

 



5 SUMMARY 

Data absorption can increase the validity of a scientific analysis of policy by helping 

emulate the system under study through the particular social institutions that caused 

the correlative data ingested by the simulation.  This technique can bridge the gap 

between data-centric and theory-centric simulations, facilitating emergence in 

simulations of particular real world scenarios.  Its automation gives simulation the a 

greater potential to be applied in a relevant manner to the bigdata of the internet, by 

virtue of the fact that the simulation need not be individually tailored to different 

real world scenarios, and can undergo validation testing by separation of the testing 

set and the training set. This technique makes use of coevolution to seed a system 

with observable outward data, so that the inner motivations of agents are found and 

filled in to complete the model of social process. 

 

.  
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ODD TEMPLATE FOR THE NEXUS COGNITIVE AGENT MODEL  

 

1. Purpose 

Question: What is the purpose of the model? 

Answer:  

The purpose of Nexus is to expand from basic principles to 
richer representations of real world scenarios, specifically to 
model emergent social behavior in a way that matches real 
world data, through a technique called data absorption.  The 
Nexus Cognitive Agent Model is a general modeling 
framework from which agents can induce strategies that 
come to correspond with other agent strategies to serve 
agent goals. As agents choose one another based on dynamic 
traits and behaviors, dynamic social networks form.  Nexus 
has been used in military analysis as a model of popular 
support and as a model of corruption.   

2. Entities, state variables, and scales  

Questions: What kinds of entities are in the model? By what state 

variables, or attributes, are these entities characterized? What are the 

temporal and spatial resolutions and extents of the model?  

Answer:  

Agents in Nexus are role-based.  They seek to gain partners in 

corresponding roles that they qualify for.  Different roles can be 

input in different networks according to function, for example, an 

agent can be part of both a kin network and a trade network.  

The agents in Nexus are general:  their attributes, static or 

learned, are described in the input to the program, which consists 

of  Bayesian Networks to describe the frequency of attributes in 

relation to each other at initialization, and ontologies to describe 

rules by which the agents may participate in network partner 



choosing and transactions.  The input also described which of 

these attributes are subject to learning with agent’s individual 

Bayesian Optimization Algorithms (BOA), based on transactions 

that increase utility according to cultural goals (also described in 

the input ontology).  Space can be represented by a separation of 

entitys from transaction according to a location attribute.  

Behaviors can be timed with a simulation clock, if a sense of time 

is desired in a model. 

3. Process overview and scheduling 

Questions: Who (i.e., what entity) does what, and in what order? 

When are state variables updated? How is time modeled, as discrete 

steps or as a continuum over which both continuous processes and 

discrete events can occur? Except for very simple schedules, one 

should use pseudo-code to describe the schedule in every detail, so 

that the model can be re-implemented from this code. Ideally, the 

pseudo-code corresponds fully to the actual code used in the program 

implementing the ABM. 

Answer:  

Individual agents first choose partners, then participate in 

transactions, and in some iterations change their strategies to a 

chromosome in their BOA, and periodically “think” or have their 

BOA’s reproduced based on what got them the most utility.  The 

number of chromosomes, a parameter of the simulation, 

determine how often these events take place.  Agents behave 

simultaneously, in random order.  There is a higher level 

controller that takes care of periodic  

4. Design concepts 

Questions: There are eleven design concepts. Most of these were 

discussed extensively by Railsback (2001) and Grimm and Railsback 

(2005; Chapter. 5), and are summarized here via the following 

questions:   

Basic principles. Which general concepts, theories, hypotheses, or 
modeling approaches are underlying the model’s design? Explain 



the relationship between these basic principles, the complexity 
expanded in this model, and the purpose of the study. How were 
they taken into account? Are they used at the level of submodels 
(e.g., decisions on land use, or foraging theory), or is their scope 
the system level (e.g., intermediate disturbance hypotheses)? Will 
the model provide insights about the basic principles themselves, 
i.e. their scope, their usefulness in real-world scenarios, 
validation, or modification (Grimm, 1999)? Does the model use 
new, or previously developed, theory for agent traits from which 
system dynamics emerge (e.g., ‘individual-based theory’ as 
described by Grimm and Railsback [2005; Grimm et al., 2005])? 
Answer:  

As every agent in Nexus has a BOA which is not seeded from 
other BOAs, and learns only according to the perception of 
the agent, and since the agents learn the world together and 
change each others utility, the general approach of Nexus is 
coevolution thorough autonomy.  Coevolutionary processes 
not only explain the social institutions emergent in Nexus, 
but facilitate the absorption of real world data. 

Emergence. What key results or outputs of the model are modeled 
as emerging from the adaptive traits, or behaviors, of individuals? 
In other words, what model results are expected to vary in 
complex and perhaps unpredictable ways when particular 
characteristics of individuals or their environment change? Are 
there other results that are more tightly imposed by model rules 
and hence less dependent on what individuals do, and hence ‘built 
in’ rather than emergent results?  
Answer:  

This varies according to scenario:  for the corruption 
scenario, the emergent behaviors are the patterns of a 
corrupt society. 

Adaptation. What adaptive traits do the individuals have? What 
rules do they have for making decisions or changing behavior in 
response to changes in themselves or their environment? Do 
these traits explicitly seek to increase some measure of individual 



success regarding its objectives (e.g., “move to the cell providing 
fastest growth rate”, where growth is assumed to be an indicator 
of success; see the next concept)? Or do they instead simply cause 
individuals to reproduce observed behaviors (e.g., “go uphill 70% 
of the time”) that are implicitly assumed to indirectly convey 
success or fitness?   
Answer:  

This varies according to scenario, for the corruption 
scenario, the agents learned strategies of behavior such as 
bribing and stealing, as well as whether to tolerate someone 
who will steal from you, or network with someone who offers 
bribes. 

Objectives. If adaptive traits explicitly act to increase some 
measure of the individual's success at meeting some objective, 
what exactly is that objective and how is it measured? When 
individuals make decisions by ranking alternatives, what criteria 
do they use? Some synonyms for ‘objectives’ are ‘fitness’ for 
organisms assumed to have adaptive traits evolved to provide 
reproductive success, ‘utility’ for economic reward in social 
models or simply ‘success criteria’. (Note that the objective of 
such agents as members of a team, social insects, organs—e.g., 
leaves—of an organism, or cells in a tissue, may not refer to 
themselves but to the team, colony or organism of which they are 
a part.)  
Answer:  

This varies according to scenario, in the corruption scenario 
the goals are cultural based, and take the form of 
transactions that are desirable, such as, the number of times 
the maternal grandmother eats, for a matrilocal tribe. 

Learning. Many individuals or agents (but also organizations and 
institutions) change their adaptive traits over time as a 
consequence of their experience? If so, how?   
Answer:  



Each agent has a BOA which  tells it what behaviors to try out, 
and whether these behaviors succeed depends on other 
agents adapting corresponding behaviors and being chosen 
for network relations.  For example, an agent may learn to  
bribe but its success depends on whether its network 
partners have learned to accept bribes.   

Prediction. Prediction is fundamental to successful decision-
making; if an agent’s adaptive traits or learning procedures are 
based on estimating future consequences of decisions, how do 
agents predict the future conditions (either environmental or 
internal) they will experience? If appropriate, what internal 
models are agents assumed to use to estimate future conditions 
or consequences of their decisions? What tacit or hidden 
predictions are implied in these internal model assumptions?  
Answer:   

Each agent makes tacit predictions of its utility based on past 
experience through its own BOA. 

Sensing. What internal and environmental state variables are 
individuals assumed to sense and consider in their decisions? 
What state variables of which other individuals and entities can 
an individual perceive; for example, signals that another 
individual may intentionally or unintentionally send? Sensing is 
often assumed to be local, but can happen through networks or 
can even be assumed to be global (e.g., a forager on one site 
sensing the resource levels of all other sites it could move to). If 
agents sense each other through social networks, is the structure 
of the network imposed or emergent? Are the mechanisms by 
which agents obtain information modeled explicitly, or are 
individuals simply assumed to know these variables?  
Answer:  

Agents can sense each others outward demographic 
characteristics and keep track of behaviors they have seen or 
that their network partners tell them other agents in their 
network have.  Whether a network partner tells is 
probabilistic and based on role. 



Interaction. What kinds of interactions among agents are 
assumed? Are there direct interactions in which individuals 
encounter and affect others, or are interactions indirect, e.g., via 
competition for a mediating resource? If the interactions involve 
communication, how are such communications represented?  
Answer:  

Agents have general transactions with each other, in which 
money may or may not be traded.  Accounts are kept track of 
as well as appropriate role partners to engage in the 
exchange of money for services with. 

Stochasticity. What processes are modeled by assuming they are 
random or partly random? Is stochasticity used, for example, to 
reproduce variability in processes for which it is unimportant to 
model the actual causes of the variability? Is it used to cause 
model events or behaviors to occur with a specified frequency?  
Answer:  

Bayesian networks control the frequency traits at 
initialization and of behaviors.  

Collectives. Do the individuals form or belong to aggregations that 
affect, and are affected by, the individuals? Such collectives can be 
an important intermediate level of organization in an ABM; 
examples include social groups, fish schools and bird flocks, and 
human networks and organizations. How are collectives 
represented? Is a particular collective an emergent property of 
the individuals, such as a flock of birds that assembles as a result 
of individual behaviors, or is the collective simply a definition by 
the modeler, such as the set of individuals with certain properties, 
defined as a separate kind of entity with its own state variables 
and traits? 
Answer:  

Social Networks form dynamically and may be analyzed to 
describe  entities. 



Observation. What data are collected from the ABM for testing, 
understanding, and analyzing it, and how and when are they 
collected? Are all output data freely used, or are only certain data 
sampled and used, to imitate what can be observed in an 
empirical study (“Virtual Ecologist” approach; Zurell et al., 2010)?  
Answer:  

Which data and how often it is output is defined by the input 
parameters.  It is output in the form of a bayesian network, a 
log of transactions, and the contents in the BOA of the 
individual agents. 

5. Initialization 

Questions: What is the initial state of the model world, i.e., at time t = 

0 of a simulation run? In detail, how many entities of what type are 

there initially, and what are the exact values of their state variables (or 

how were they set stochastically)? Is initialization always the same, or 

is it allowed to vary among simulations? Are the initial values chosen 

arbitrarily or based on data? References to those data should be 

provided. 

Answer:  

Initial values are based on real world data, and vary from run to 

run, input in the form of a Bayesian Network. 

6. Input data 

Question: Does the model use input from external sources such as 

data files or other models to represent processes that change over 

time? 

Answer:  

Nexus uses a Bayesian network to represent agent attributes as 

they exist statistically in the real world, and ontologies that have 

cultural rules.  There is also an option to input specific 

individuals.  In the corruption scenario, data from the Congo was 

used. 



7. Submodels 

Questions: What, in detail, are the submodels that represent the 

processes listed in ‘Process overview and scheduling’? What are the 

model parameters, their dimensions, and reference values? How were 

submodels designed or chosen, and how were they parameterized and 

then tested? 

Answer:  

Nexus process overview and scheduling parameters are inputs to 

the program.  In the onotology that describes the cultural 

behaviors of agents, one may note behavior frequency, so that it is 

scheduled on the simulation clock.   

 


