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Abstract. A continuous-time Markov process is proposed to analyze
how a group of humans solves a complex task, which consists in the search
of the optimal set of decisions on a fitness landscape. Individuals change
their opinions driven by the self-directed behavior, which pushes them
to increase their own fitness value, and by the social interactions, which
push individuals to find a common opinion. Results show that increasing
the strength of social interactions makes the decision-making process
more effective. However, too high values of social interaction strength
worsen the performance of the group. We also show that a moderate
level of knowledge is already enough to guarantee high performance of
the decision-making process.
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1 Introduction

The ability of groups to solve complex problems that exceed individual skills is
widely recognized in natural, human, and artificial contexts. Animals in groups,
e.g. flocks of birds, ant colonies, and schools of fish, exhibit collective intelli-
gence when performing different tasks as which direction to travel in, foraging,
and defense from predators [1], [2]. Artificial systems such as groups of robots
behaving in a self organized manner show superior performance in solving their
tasks, when they adopt algorithms inspired by the animal behaviors in groups
[3], [4], [5]. Human groups such as organizational teams outperform the single
individuals in a variety of tasks, including problem solving, innovative projects,
and production issues [6], [7], [8].

The superior ability of groups in solving tasks originates from collective deci-
sion making: agents make choices, pursuing their individual goals on the basis of
their own knowledge and amount of information, and adapting their behavior to
the actions of the other agents. Even though the single agents posses a limited
knowledge, and the actions they perform usually are very simple, the collective
behavior, enabled by the social interactions, leads to the emergence of a superior
intelligence of the group [9], [10], [11].
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In this paper we focus on human groups solving complex combinatorial prob-
lems. Many managerial problems may be conceived indeed as problems where the
effective combinations of multiple and interdependent decision variables should
be identified [12], [13], [14], [15]. Our model of collective decision making at-
tempts to capture the main drivers of the individual behaviors in groups, i.e.,
self-interest and consensus seeking. Agent’s choices are made by optimizing the
perceived fitness value, which is an estimation of the real fitness value based on
the level of agent’s knowledge [16], [1]. However, any decision made by an individ-
ual is influenced by the relationships he/she has with the other group members.
This social influence pushes the individual to modify the choice he/she made,
for the natural tendency of humans to seek consensus and avoid conflict with
people they interact with [17].

We use the Ising-Glauber dynamics [18] to model the social interactions
among group members. The NK model [19], [20] is employed to build the com-
plex fitness landscape associated with the problem to solve. A continuous-time
Markov chain is proposed to describe the time evolution of the decision-making
process. We define the transition rate of individual’s opinion change as the prod-
uct of the Ising-Glauber rate ([18]), which implements the consensus seeking [22],
[21], and an exponential rate [23], which models the self-directed behavior of the
individual.

Herein, we explore how both the strength of social interactions and the level of
knowledge of the members influence the group performance. We extend previous
studies highlighting the efficacy of collecting decision making in presence of a
noisy environment [24], and in conditions of cognitive limitations[2], [8].

2 The Model

We consider a human group made of M socially interacting members, which is
assigned to solve a complex task. The task consists in solving a combinatorial
decision making problem by identifying the set of decisions (choice configuration)
with the highest fitness. The fitness function is built employing the NK model
[19], [20]. A N -dimensional vector space of decisions is considered, where each
choice configuration is represented by a vector d = (d1, d2, ..., dN ). Each decision
is a binary variable that may take only two values +1 or −1, i.e. di = ±1,
i = 1, 2, ..., N . The total number of decision vectors is therefore 2N . Each vector
d is associated with a certain fitness value V (d) computed as the weighted sum

of N stochastic contributions 0 ≤ Wj

(

dj , d
j
1, d

j
2, .., d

j
K

)

≤ 1, each decision leads

to a total fitness depending on the value of the decision dj itself and the values of

other K decisions dji , i = 1, 2, ...,K. The fitness function of the group is defined
as
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1
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∑
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j
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j
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)

(1)

The integer index K = 0, 1, 2, ..., N−1 is the number of interacting decision vari-
ables, and tunes the complexity of the problem. The complexity of the problem
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increases with K. Note that, for K ≥ 2, in computational complexity theory,
finding the optimum of the fitness function V (d) is classified as a NP-complete
decision problem [25]. This makes this approach particularly suited in our case.

We model the level of knowledge of the k-th member of the group (with
k = 1, 2, ...M) by defining the M × N competence matrix D, whose elements
Dkj take the valueDkj = 1 if the member k knows that the decision j contributes
to the total fitness V , otherwise Dkj = 0. Based on the level of knowledge each
member k computes his/her own perceived fitness (self-interest) as

Vk (d) =

∑N

j=1 DkjWj

(

dj , d
j
1, d

j
2, .., d

j
K

)

∑N

j=1 Dkj

. (2)

Note that if
∑N

j=1 Dkj = 0 the perceived fitness is set to zero. Each mem-
ber of the group makes his/her choices driven by the self-directed behavior,
which pushes him/her to increase the self-interest, and by social interactions,
which push the member to seek consensus within the group. When Dkj = 0,
for j = 1, 2, ...N the k-th member possesses no knowledge about the fitness
function, and his choices are driven only by consensus seeking. Note that the
choice configuration that optimizes the perceived fitness Eq. (2), does not nec-
essarily optimize the group fitness Eq. (1). This makes the mechanism of social
interactions, by means of which knowledge is transferred, crucial for achieving
high-performing decision-making process. We build the matrix D, by randomly
choosing Dkj = 1 with probability p ∈ [0, 1], and Dkj = 0 with probability 1−p.
By increasing p from 0 to 1 we control the level of knowledge of the members,
which affects the ability of the group in maximizing the fitness function Eq. (1).

All members of the group make choices on each of the N decision variables
dj . Therefore, the state of the k-th member (k = 1, 2, ..,M) is identified by the

N -dimensional vector σk =
(

σ1
k, σ

2
k, ...σ

N
k

)

, where σj
k = ±1 is a binary variable

representing the opinion of the k-th member on the j-th decision. For any given
decision variable dj , individuals k and h agree if σj

k = σj
h, otherwise they disagree.

Within the framework of Ising’s approach [22], disagreement is characterized by
a certain level of conflict Ej

kh (energy level) between the two socially interacting

members k and h, i.e. Ej
kh = −Jσj

kσ
j
h, where J is the strength of the social

interaction. Therefore, the total level of conflict on the entire set of decisions is
given by:

E = −
∑

j

∑

(k,h)

Jσj
kσ

j
h (3)

where the sum on the indexes k and h is over pairs of adjacent spins (every pair
is counted once) and the symbol (·) indicates that k and h are nearest neighbors.

A multiplex network [26] with N different layers is defined. On each layer,
individuals share their opinions on a certain decision variable dj leading to a cer-
tain level of conflict. The graph of social network on the layer dj is described in

terms of the symmetric adjacency matrix A
j with elements Aj

kh. The intercon-
nections between different layers represent the interactions among the opinions
of the same individual k on the decision variables.
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In order to model the dynamics of decision-making in terms of a continuous-
time Markov process we define the state vector s of the entire group as s =
(s1, s2, ..., sn) =

(

σ1
1 , σ

2
1 , ...σ

N
1 , σ1

2 , σ
2
2 , ...σ

N
2 , ..., σ1

M , σ2
M , ...σN

M

)

of size n= M×N ,

and the block diagonal adjacency matrix A = diag
(

A
1,A2, ...,AN

)

. Now let be
P (s, t) the probability that, at time t, the state vector takes the value s out of 2n

possible states. The time evolution of the probability P (s, t) obeys the master
equation

dP (s, t)

dt
= −

∑

l

w (sl → s
′

l)P (sl, t) +
∑

l

w (s′l → sl)P (s′l, t) (4)

where sl = (s1, s2, ..., sl, ..., sn), s
′

l = (s1, s2, ...,−sl, ..., sn). The transition rate
w (sl → s

′

l) is the probability per unit time that the opinion sl flips to −sl while
the others remain temporarily fixed. Recalling that flipping of opinions is gov-
erned by social interactions and self-directed behavior a possible ansatz for the
transition rates is

w (sl → s
′

l) =
1

2

[

1− sl tanh

(

βJ
∑

h

Alhsh

)]

exp {β′ [∆V (s′l, sl)]} (5)

In Eq. (5) the pay-off function ∆V (s′l, sl) = V̄ (s′l) − V̄ (sl), where V̄ (sl) =
Vk (σk), is simply the change of the fitness perceived by the agent k, when its
opinion sl = σj

k on the decision j changes from sl = σj
k to s′l = −σj

k. The
transition rates w (sl → s

′

l) have been chosen to be the product of the transi-
tion rate of the Ising-Glauber dynamics [18], and the Weidlich exponential rate
exp {β′ [∆V (s′k, sk)]}[23]. Note that Eq. (5) satisfies the detailed balance condi-
tion. In Eq. (5) the quantity β is the inverse of the so-called social temperature
and is a measure of the chaotic circumstances which lead to a random opinion
change. The term β′ is related to the degree of uncertainty associated with the
information about the perceived fitness (the higher β′ the less the uncertainty).

To solve the Markov process Eqs. (4, 5), we employ a simplified version of
the exact stochastic simulation algorithm proposed by Gillespie [27], [28]. The
algorithm allows to generate a statistically correct trajectory of the stochastic
process Eqs. (4, 5).

3 Measuring the performance of the collective

decision-making process

The group fitness value Eq. (1) and the level of agreement between the members
(i.e. social consensus) are used to measure the performance of the collective-
decision making process. To calculate the group fitness value, the vector d =
(d1, d2, ..., dN ) needs to be determined. To this end, consider the set of opinions
(

σj
1, σ

j
2, ..., σ

j
M

)

that the members of the group have about the decision j, at

time t. The decision dj is obtained by employing the majority rule, i.e. we set

dj = sgn

(

M−1
∑

k

σj
k

)

, j = 1, 2, ..., N (6)
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If M is even and in the case of a parity condition, dj is, instead, uniformly
chosen at random between the two possible values ±1. The group fitness is then
calculated as V [d (t)] and the ensemble average (i.e. the mean over multiple
simulation runs) 〈V (t)〉 is then evaluated. The efficacy of the group in optimizing
〈V (t)〉 is then calculated in terms of normalized average fitness 〈V (t)〉 /Vmax

where Vmax = max [V (d)].
The consensus of the members on the decision variable j is measured as

〈C (t)〉 =
1

N

∑

j

〈

Cj (t)
〉

=
1

N

N
∑

j=1

1

M2

M
∑

kh=1

〈

σj
k (t)σ

j
h (t)

〉

(7)

Note that
〈

σj
k (t)σ

j
h (t)

〉

= Rj
hk (t) is the correlation function of the opinions of

the members k and h on the same decision variable j, and 0 ≤ 〈C (t)〉 ≤ 1.

4 Simulation and results

We consider a group of M = 6 members which have to make N = 12 decisions.
For the sake of simplicity, the network of social interactions on each decision
layer j is described by a complete graph, where each member is connected to
all the others. We also set β′ = 10, since we assume that the information about
the perceived fitness function is characterized by a low level of uncertainty. We
simulate many diverse scenarios to investigate the influence of the parameter p,
i.e. of the level of knowledge of the members, and the effect of the parameter
βJ on the final outcome of the decision-making process. For any given p and
βJ , each stochastic process Eqs. (4, 5) is simulated by generating 100 different
realizations (trajectories). For each single realization, the competence matrix
D is set, and the initial state of the system is obtained by drawing from a
uniform probability distribution, afterwards the time evolution of the state vector
is calculated with the stochastic simulation algorithm. Fig. 1 shows the time-
evolution of normalized average fitness 〈V (t)〉 /Vmax and consensus 〈C (t)〉, for
p = 0.5 (i.e. for a moderate level of knowledge of the members), different values of
the complexity parameter K = 1, 5, 11, and different values of βJ = 0.0, 0.5, 1.0.
We observe that for βJ = 0, i.e. in absence of social interactions [see Fig. 1(a)] the
decision-making process is strongly inefficient, as witnessed by the very low value
of the average fitness of the group. Each individual of the group makes his/her
choices in order to optimize the perceived fitness, but, because of the absence
of social interactions, he/she behaves independently from the others and does
not receive any feedback about the actions of the other group members. Hence,
individuals remain close to their local optima, group fitness cannot be optimized
and the consensus is low [see Fig. 1(b)] As the strength of social interactions
increases, i.e., βJ = 0.5 [Fig. 1(c)], members can exchange information about
their choices. Social interactions push the individuals to seek consensus with
the member who is experiencing higher payoff. In fact, on the average, those
members, which find a higher increase of their perceived fitness, change opinion
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(a) (b)

(f)

(d)(c)

(e)

Fig. 1. The time-evolution of the normalized average group fitness, and total consesus,
for p = 0.5, K = 1, 5, 11. βJ = 0.0, (a,b); βJ = 0.5, (c,d); βJ = 1.0, (e,f).

Fig. 2. The stationary values of the normalized averaged fitness 〈V∞〉 /Vmax as a func-
tion of βJ , (a); and of the statistically averaged consensus 〈C∞〉 as a function of βJ ,
(b). Results are presented for p = 0.5, K = 1, 5, 11
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much faster than the others. Thus, the other members, in process of seeking
consensus, skip the local optima of their perceived fitness and keep exploring the
landscape, leading to a substantial increase of the group performance both in
terms of group fitness values [Fig. 1(c)] as well as in terms of final consensus [Fig.
1(d)]. Thus, the system collectively shows a higher level of knowledge and higher
ability in making good choices than the single members (i.e., a higher degree of
intelligence). It is noteworthy that when the strength of social interactions is
too large, βJ = 1, [Fig. 1(e)] the performance of the group in terms of fitness
value worsens. In fact, very high values of βJ , accelerating the achievement of
consensus among the members [Fig. 1(f)], significantly impede the exploration
of the fitness landscape and hamper that change of opinions can be guided by
payoff improvements.

The search of the optimum on the fitness landscape is slowed down, and
the performance of the collective decision-making decreases both in terms of the
time required to reach the steady-state as well as in terms of group fitness.

Figure 1, shows that rising the complexity of the landscape, i.e. increasingK,
negatively affects the performance of the collective decision-making process, but
does not qualitatively change the behavior of the system. However, Figure 1(c)
also shows that, in order to cause a significant worsening of the group fitness,
K must take very large values, i.e., K = 11. Instead, at moderate, but still
significant, values of complexity (see results for K = 5) the decision-making
process is still very effective, leading to final group fitness values comparable to
those obtained at the lowest level of complexity, i.e., at K = 1.

In Figure 2, the steady-state values of the normalized group fitness 〈V∞〉 /Vmax =
〈V (t → ∞)〉 /Vmax [Fig. 2(a)], and social consensus 〈C∞〉 = 〈C (t → ∞)〉 [Fig.
2(b)] are shown as a function of βJ , for p = 0.5 and the three considered values of
K = 1, 5, 11. In particular increasing βJ from zero, makes both 〈V∞〉 /Vmax and
〈C∞〉 rapidly increase. This increment is, then, followed by a region of a slow
change of 〈V∞〉 /Vmax and 〈C∞〉. It is worth noticing, that the highest group
fitness value is obtained at the boundary between the increasing and almost
stationary regions of 〈C∞〉. Moreover, results show that high consensus is neces-
sary to guarantee high efficacy of the decision-making process, i.e. high values of
〈V∞〉 /Vmax. Figure. 2(a) also stresses that the fitness landscape complexity (i.e.,
the parameterK) marginally affects the performance of the decision-making pro-
cess in terms of group fitness, provided that K does not take too high values. In
fact curves calculated for K = 1, 5 run close to each-other.

In Figure 3 the steady-state values of the normalized group fitness 〈V∞〉 /Vmax

[Fig. 3(a)], and social consensus 〈C∞〉 [Fig. 3(b)] are shown as a function of p,
for βJ = 0.5 and the three considered values of K = 1, 5, 11. Note that as p
is increased from zero, the steady state value 〈V∞〉 /Vmax initially grows fast
[Fig. 3(a)]. In fact, because of social interactions, increasing the knowledge of
each member also increases the knowledge of the group as a whole. But, above
a certain threshold of p the increase of 〈V∞〉 /Vmax is much less significant. This
indicates that the knowledge of the group is subjected to a saturation effect.
Therefore, a moderate level of knowledge is already enough to guarantee very
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Fig. 3. The stationary values of the normalized average group fitness 〈V∞〉 /Vmax as a
function of p, (a); and of the statistically averaged consensus 〈C∞〉 as a function of p,
(b). Results are presented for βJ = 0.5, K = 1, 5, 11

good performance of decision-making process, higher knowledge levels being only
needed to accelerate the convergence of the decision-making process. Figure 3(b)
shows that for vanishing values of p the consensus 〈C∞〉 takes high values, as each
member’s choice is driven only by consensus seeking. Increasing p initially causes
a decrease of consensus, as the self-interest of each member leads to a certain
level of disagreement. However, a further increment of p makes the members’
knowledge overlap so that the self-interest of each member almost points in the
same direction, resulting in a consensus increase.

5 Conclusions

We have presented a model of collective decision-making on complex landscapes.
The model describes the time evolution of group choices in terms of a time-
continuous Markov process, where the transition rates have been defined so as
to capture the effect of the two main forces, which drive the change of opinion
of the members of the group. These forces are the self-directed behavior which
pushes each member to increase his/her self-interest, and the social interactions,
which push the members to reach a common opinion. Our study identifies under
which circumstances collective decision making performs better. We found that
a moderate strength of social interactions allows for knowledge transfer among
the members, leading to higher knowledge level of the group as a whole. This
mechanism, coupled with the ability to explore the fitness landscape, makes
the entire group behave as unique entity characterized by a higher degree of
intelligence. We also found that increasing the level of knowledge of the members
improves performance. However, above a certain threshold the knowledge of the
group saturates. Our results also shows that human groups with optimal levels
of members’ knowledge and strength of social interactions very well manage
complex problems.
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