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Abstract. Detailed population distribution data are often unavailable
for building spatial agent-based models of climate change effects on hu-
mans, especially for past, historical data. A key challenge is to generate
approximations of historical (or even future) populations, to initialize our
models, based on certain spatial qualities of the landscape. We use evo-
lutionary algorithms (EAs) to tune a relatively simple ”placement algo-
rithm” or ”settlement algorithm.” The EAs generate modern settlements
that match LandScan data. When generating historical populations, we
include as much information as is available, and then let our algorithm
generate missing parts of the spatio-temporal distribution. We illustrate
this procedure based on evolutionary computation with the NorthLands
model of climate change and social dynamics, using MASON and ECJ.
Results are positive and encouraging, highlighting additional research
directions.

A critical task in developing viable, empirically-based agent-based models (ABM)
of complex systems with coupled human, artificial, and natural (CHAN) compo-
nent subsystems is the specification of initial population distributions. Theory,
observation, and experience can provide significant help, but in most cases find-
ing proper population distribution values is a hard, non-trivial task in ABM
research. This is especially so for ABMs on climate change and societal dy-
namics, where spatial and temporal scales are relatively large and theory and
observations on population distributions are incomplete.

This paper presents a novel methodological procedure for obtaining popu-
lation distributions in ABMs of CHAN systems using genetic algorithms (GA)
from evolutionary computation (EC). The GA-based procedure is illustrated
with the recent MASON NorthLands ABM, created to analyze climate change
scenarios and societal consequences (Cioffi et al. 2015). Results show the advan-
tage of our GA-based procedure over other approaches, such as manual tuning.

The next section provides and introduction with motivation and background
on earlier related research, followed by sections describing, experimenting with,
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and discussing our proposed GA-based procedure. The final section provides a
summary.

1 Introduction

1.1 Motivation: Research Questions

Consider the goal of developing a viable, empirically-calibrated agent-based
model (ABM) of a complex system with coupled human, artificial, and natu-
ral (CHAN) component subsystems, such as one or more geographic regions
of the Earth system. How are initial population distributions determined when
extant theory, data, or other sources are insufficient or unavailable? Which pro-
cedures can provide valid answers to such questions? How can the procedures
be tested, demonstrated, and improved? Research questions such as these are
critical for the task of determining proper population distributions in ABMs of
CHAN systems used for analyzing and understanding impacts of climate change
on society as well as the natural and built environments.

As pointed out elsewhere, “computational simulation modeling provides a vi-
able scientific methodology, specifically through geospatial agent-based models
(Cioffi, 2014: ch.10; Heppenstall et al., 2012; Railsback and Grimm, 2012). Such
models combine a set of features, such as: (1) ability to selectively represent
all empirical entities of interest (social, artificial, and natural) as computational
objects endowed with (i.e., encapsulating) attribute-variables necessary to deter-
mine the state of each entity (overcoming the challenge of high dimensionality);
(2) ability to model all necessary spatio-temporal features, such as weather, land-
scapes, and human activity that co-evolve over time (overcoming fragmentation
in traditional disciplinary models); (3) ability to implement relevant systems
and processes directly informed by social and biophysical theories (leveraging all
necessary disciplinary knowledge within a unified framework); and (4) ability to
manipulate variables and change scenarios, including at run-time, for conducting
virtual experiments that yield empirically valid results (enabling experimental
science in silico)”(Cioffi et al., 2015: 2).

MASON (Multi-Agent Simulator Of Neighborhoods) (Luke et al. 2005) is a
Java toolkit for building ABMs, while ECJ (Luke 2010) is a highly configurable
Java toolkit that can thus be used to create a variety of different Evolutionary
Algorithms. Further motivation is provided by the opportunity to use MASON
and ECJ in combination, for which both systems are optimized (Cioffi, De Jong
& Bassett 2012).

1.2 Relevant Literature

Recent comprehensive reviews of the literature on spatial agent-based social
simulation models that focus on socio-natural and socio-engineered systems (i.e.,
the most relevant class of models) include An et al. (2014) and Cioffi (2015), in
addition to Batty (2013), Heppenstall et al. (2012), Kohler and van der Leeuw
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(2007), Liu et al. (2007), and Railsback and Grimm (2012). The most common
strategy for populating a spatial ABM at initialization is to assign agents to
random locations and let the burn-in phase at run time determine where they will
be subsequently distributed, based on the model’s dynamics. Another strategy
is to use a known empirical distribution, such as provided by census data, but
for simulations extending into the past this is not a viable solution. Neither
of these strategies works well for models that have large spatial and temporal
scales, because they either take too long to run (former case) or information for
initialization is unavailable (latter case).

2 Proposed Procedure

This section describes our proposed general procedure, prior to presenting illus-
trative results in the next section. The main goal is to obtain viable estimates
of population distributions for use in a geospatial agent-based model. By “vi-
able” we mean population values that have internal and external validity (i.e.,
accuracy and empirical correspondence, respectively) as well as reliability (mea-
surement consistency over space and time). First, we describe the algorithm for
initial settlement nucleation by agent placement, followed by the evolutionary
algorithm (EA).

2.1 Agent Placement/Settlement Nucleation Algorithm

During initialization, agents are placed on the ABM’s “map” a few at a time,
based on certain spatial features that exist. As agents are placed, subsequent
agents decisions are affected by decisions made by earlier agents. In other words,
agents will tend to be attracted to locations that have already been settled, thus
growing towns and cities.

The MASON modeling library allows for a number of map layers to be de-
fined. These layers contain geospatial information in the form of grids that can
be displayed independently or together. The data from these layers can be ac-
cessed by agent, or other parts of the program. Several map layers define the
features that affect settlement. The specific layers we use are: elevation above
sea level, proximity to fresh water (i.e., large rivers and lakes), proximity to po-
tential ports, and temperature averaged over a 50 year period. These and other
features described below are ethnographically appropriate (i.e., informed by cul-
tural anthropology), given the target system and research questions addressed
by the model; different features apply to other cases. In this case they represent
features that actors deem significant in their lives, and relate to growing seasons,
transportation, and trade, among other human activities.

The locations of previously settled agents also affects current and future set-
tlement decisions. These are modeled as two layers. The first defines the locations
of the already settled population, and the second is derived from the first, and
adds a diffusion effect, making it attractive to settle in locations that neighbor
locations that are populated. The diffusion grid is generated by iterating through
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each cells in the population grid, retrieving the population value for the given
cell, and then adding this value to all the cells in the diffusion grid that make
up the Moore neighborhood of the corresponding cell.

Fig. 1. Spatial distribution of desirability by average temperature (upper left), eleva-
tion (upper right), fresh water (lower left), and ports (lower right).

Accordingly, six spatial layers affect settlement decisions. Four represent nat-
ural qualities or physical features of a given location: temperature (t), elevation
(e), proximity to fresh water (w), and proximity to a port (p), as shown in
Figure 1. Two more spatial layers represent social qualities: settled population
(s) and population diffusion (f). Each of these six variables represents a vector
containing the appropriate values for all the cells in Canada. These are combined
to form another layer called desirability, using the following formulas:

n = ctz(t) + cez(e) + cwz(w) + cpz(p) (1)

n′ = normalize(n) (2)

a = css + cfcsf (3)
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d =


(n′1)cx + a1
(n′2)cx + a2

...
(n′m)cx + am

 (4)

Here, n is a vector denoting desirability based on natural factors alone, m is
the length of n (and all the other vectors as well), a is a vector representing social
factors alone, and d is a vector representing total desirability at each grid cell on
the map (in this case Canada). This equation is performed on every grid cell, thus
defining a new, aggregate layer for desirability. The constant cx is an exponent
with the effect of adjusting the emphasis on high desirability areas, allowing
the demand for the most desirable areas to be increased appropriately. The
function z() transforms a vector into a set of standardized z-score values, where
z(x) = (xi −µ)/σ, and the normalize() function is a unity-based normalization
function, rescaling values into the range [0, 1].

When an agent selects the area it will settle, it essentially considers every grid
cell in Canada, and then chooses one of those locations randomly, with a like-
lihood that is biased by the desirability. This is implemented using a technique
that is common in evolutionary algorithms called a roulette wheel.

A roulette wheel is essentially implemented as follows. Pick a random number
y between 0 and

∑
di. Then traverse the vector d, summing the values as you

go. If the sum exceeds y, then the previous vector value in d is chosen, and the
grid cell associated with it is selected for settlement. The speed of this process
can be greatly improved by keeping a vector of partial sums of d, and then using
a binary search to find the appropriate index.

Because our desirability calculation is dependent on agents that have already
been placed, we must update the roulette wheel from time to time. In theory
we should update it after every agent is placed, but this would be too time
consuming. Instead, we decided to place agents in groups, and then perform the
update. For our experiments, we place 100000 agents before performing another
update. The consequence of this is that the placement decisions made by agents
will not be affected by any other agents that were placed previously that were
also in the same group.

When agents are placed, they are placed 10 at a time. In other words, a
location is chosen, and then 10 agents are placed in that one location. Then
another location is chosen, 10 more agents are place, and so on. According to
the LandScan data, the total population in Canada in 2005 is just over 30 million,
and this is how many agents we ultimately place.

2.2 Evolutionary Algorithm

Our EA was implemented using the ECJ toolkit, given that the NorthLands
model is implemented in MASON (Luke et al. 2005) and the two toolkits are
built to operate together in a highly efficient way.
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Representation Individual agents in our EA are represented as a list of real
valued numbers. These comprise key constants to the agent placement algorithm
(see 2.1). Specifically, the following constants are defined as genes: ce, cw, cp, ct,
cs, cf , cx. All genes are constrained to the range [-1, 1], except for cs, cf , and
cx, which are constrained to ranges [0, 30], [0, 10], and [0, 40], respectively.

Selection and Reproduction The parent and offspring populations in our
EA are non-overlapping. This simply means that each new generation consists
solely of newly produced offspring. In other words, no individuals from pro-
ceeding generations are allowed to survive. We felt that this would allow for
greater variation, and avoid becoming trapped in local optima, thus improving
the search.

During reproduction, parents are selected using tournament selection with a
tournament size of 2. This provides a reasonably strong and consistent selection
pressure, without being overwhelming.

All selected parents are varied using two reproduction operators: two-point
crossover and Gaussian mutation. Two-point crossover was chosen over one-
point crossover because it is known to have fewer issues with gene linkages (De
Jong, 2006). The Gaussian mutation operator is applied to every gene in each
individual, with a fixed and relatively low amount of variation (σ = 0.05), which
we determined experimentally using sensitivity studies. A low value for σ allows
the EA better convergence on solutions later in the run. The crossover counter-
balances this, as it is known to produce large amounts of variation, but only
early in the run, when it is most useful.

All experiments were performed with populations containing 50 individuals.
In general, crossover requires populations of at least this size to be effective.
Similarly, all experiments were run for 50 generations, which preliminary exper-
iments determined was sufficient to converge on a solution.

Fitness Function The fitness of an individual is calculated by using the gene
values as parameters to the placement algorithm and generating a population.
This population is then compared to the LandScan data to see how similar
the two are. LandScan data is a GIS product created at Oak Ridge National
Laboratory that estimates global population distributions at a 1km scale.

There are two distinct aspects of the populations that are compared: a spa-
tial distribution, and the rank distribution of the cells. A good fit for the spatial
distribution indicates that agents are in roughly the correct locations and con-
centrations. Rank distribution, on the other hand, gives an indication of whether
agents tend to create communities with similar densities and in similar propor-
tion to actual human communities.

Spatial Distribution A simple approach to measuring a spatial distribution is to
calculate the Kullback-Leibler divergence of the two distributions (Kullback and
Leibler, 1951). This produces a result in the range [0, 1], thus creating a type of
similarity metric, with a 1 indicating a perfect match.
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However, we were concerned that human populations tend to be highly con-
centrated into population centers within relatively small boundaries. Even under
the best of circumstances, it is unlikely that our algorithm would be able to gen-
erate cities in exactly the same locations as the ones that humans chose to
nucleate. Our concern was that our placement algorithm might generate a city
very close to the location of an actual city, but still far enough away so that there
is little impact on the similarity metric. In other words, the algorithm would get
almost no credit, even though the generated and real cities were actually quite
close.

In order to create a more forgiving similarity metric, we first applied a Gaus-
sian smoothing algorithm to both populations before comparing them. Figure 2
provides an example of the effect that this has on the spatial layer, essentially
spreading the population out into larger masses. For the Gaussian smoothing,
we performed 2 passes using a 9 × 9 kernel with σ = 3.0.

Fig. 2. The left image is population distribution derived from 2005 LandScan data. The
color map has been altered to be non-linear in order to emphasize the low population
grid cells. The right image is the same population data with a Gaussian smoothing
algorithm applied for use with the EA fitness function.

Rank Distribution The rank distributions of settlement sizes (also called Zipf’s
or Zipfian distributions) were compared using the Kolmogorov-Smirnov statistic,
which has value in the range [0, 1], with 0 being an identical match.

Combining Measures We combined the spatial and rank measures as follows:
f(x) = s(x)(1 − r(x)), where s(x) is the spatial measure and r(x) is the rank
measure, both described above. This creates the fitness values used for an indi-
vidual in the EA.
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3 Further Illustrative Results

In this section we provide additional illustrative results using the same example
for populating the Canadian boreal and Arctic regions of the MASON North-
Lands model. 30 runs of the EA were performed, and the solutions evolved all
tended to be roughly similar. These coefficient values are fairly representative:
ct = 0.90, cp = −0.085, cw = −0.2, ce = −0.17, cs = 4.0, cf = 2.0, and cx = 35.0.
Figure 3 shows the spatial distribution of aggregate desirability (left) generated
by these values, which were used to generate the corresponding population dis-
tribution (right).

Fig. 3. Aggregate desirability (left) is composed of the desirability components in fig-
ure 1, combined using the coefficients found by the EA. The generated population
(right) used the aggregate desirability to place agents in the appropriate locations.

By contrast, Figure 4 shows a side-by-side comparison of real data (left) and
a population generated from the best evolved result (right; fig. 3, right).

Finally, a different perspective is gained by comparing and contrasting the
rank-size distributions for real and simulated data. As shown in Figure 5, the
two distributions are quite similar and minor differences can be explained. The
largest cities are somewhat larger in the empirical (LandScan data) distribution,
because the NorthLands model does not priviledge settlement formation over
other factors that operate in the real world. At the other extreme, small towns
or villages are not measured with great accuracy by the LandScan data, whereas
data collection is exact (zero measurement error) for the simulated data.

4 Discussion

4.1 On the proposed procedure

The procedure we have presented and demonstrated requires fairly standard
tools from evolutionary computation and is generally applicable to a broad vari-
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Fig. 4. A side-by-side comparison of the 2005 LandScan data (left) and a population
generated from the best evolved result (right).

Fig. 5. A comparison of population rank-size distributions on a log-log scale. Rank and
population are represented by the x- and y-axis, respectively The generated population
(blue ’x’) is very similar to that in the LandScan data (red ’+’), although the population
seems to be somewhat skewed away from areas of high density and toward areas of
lower density.
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ety of situations characterised in the Introduction. The situation addressed is not
uncommon in computational social science using spatial agent-based models, so
the same procedure could be used to populate other entities that can be placed
according to a set of identified features. For examples, certain types of buildings
or infrastructure, not just human agents or households (as in NorthLands).

Another advantage of the proposed procedure is that it is also susceptible to
improvements as evolutionary computation (and advanced toolkits, such as ECJ)
also improve. Finally, this EA procedure can be easily tested in other MASON-
based social simulation models, because ECJ is ideally designed to operate with
models created with MASON.

4.2 On the results

The context of these results is provided by the broader Mason-Smithsonian Joint
Project on Climate and Society, of which NorthLands is a core part. These
results represent the latest of several iterations that were developed using a
spiral development model, and in that time NorthLands has evolved from a
single model architecture to one based on a “federated” framework.

The results demonstrated here have intrinsic value for the proposed proce-
dure, as well as extrinsic value for marking progress in the development and
analysis of NorthLands. These results on population distributions provide more
robust foundations for the simulation of population migratory movements when
climate change stress the population through a variety of causal mechanisms, as
in a network of influences that generate rural and urban migratory movements.

4.3 Future research

The following are envisioned developments:

1. We are developing an approach to incorporating more detailed census infor-
mation into our placement algorithm. Population information often exists at
the province, county and municipal levels, and we are planning to constrain
the placement of certain agents to match this.

2. We are developing a mechanism for agent movement that uses an approach
that is very similar to our placement algorithm, but includes additional fac-
tors in decision-making, such as available infrastructure, wealth, agent sat-
isfaction and agent preferences.

3. We plan to perform sensitivity studies, particularly in different regions and
time frames, in order to determine the robustness of these results and their
sensitivity to cultural factors.
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